
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Pinning synchronization of spatial diffusion coupled reaction-diffusion
neural networks with and without multiple time-varying delays

Shu-Xue Wanga, Yan-Li Huanga,b,⁎, Bei-Bei Xua

a School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China
b Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin Polytechnic University, Tianjin 300387, China

A R T I C L E I N F O

Keywords:
Spatial diffusion coupling
Pinning control
Adaptive control
Synchronization
Coupled reaction-diffusion neural networks

A B S T R A C T

In this paper, two coupled reaction-diffusion neural networks (CRDNNs) with spatial diffusion coupling are
studied. In the first one, the single reaction-diffusion neural network (RDNN) is coupled by their current states.
The single RDNN is coupled by their current states and delayed states in the second one. Combined with some
inequality techniques and Lyapunov functional approach, a synchronization criterion for the first network
model is established via adding controllers to the first l nodes. In addition, a sufficient condition is derived to
make sure that the considered network can achieve synchronization by designing pinning adaptive feedback
controllers. Similarly, the pinning synchronization for the second network model is also considered. Finally, the
correctness of the obtained results are confirmed by numerical simulation in two illustrated examples.

1. Introduction

Recently, more and more attention has been paid to neural
networks (NNs) because of their extensive applications, such as pattern
recognition, associative memory, optimization, signal processing and
other engineering or scientific fields [1,2]. Thus, the dynamical
behaviors of NNs were investigated by many researchers. In [3], Ahn
studied the exponential filter and passive for Takagi-Sugeno fuzzy
Hopfield NNs. Yang et al. [4] considered the problem of stability for
NNs.

In the last few years, research into the applications of coupled
neural networks (CNNs) have developed very fast in science and
engineering. In many situations, the applications of CNNs mainly
depend on their dynamical behaviors [5–10], especially, the synchro-
nization of CNNs. Hence, many scholars have considered the synchro-
nization of CNNs [11–20]. In [11], the authors discussed impulsive
synchronization for a CNNs at partly unknown transition probabilities.
Zhang et al. [13] focused on the synchronization and stability of
memristor-based CNNs. In [14], the authors paid attention to the
mean square synchronization of coupled stochastic NNs with on-off
coupling which is periodic.

Actually, diffusion phenomena can't be avoided in NNs [21–29]. So
far, a great deal of researchers have investigated the dynamical
behaviors of reaction-diffusion neural networks (RDNNs). In [21],
some sufficient conditions were derived to make an impulsive Cohen-

Grossberg RDNNs with delays realize global exponential stability. The
robust global exponential stability was discussed for interval Hopfield
RDNNs [25]. The passivity and stability problems of RDNNs were
studied in [24]. However, very few research results on the synchroniza-
tion for coupled RDNNs (CRDNNs) have been got [26–29]. In [26],
Wang and Wu considered synchronization and ∞ synchronization of
CRDNNs with hybrid coupling. An edge-based adaptive strategy was
designed to tune a small number of the coupling strengths which leads
to the synchronization of CRDNNs [27]. The authors gave several
adaptive synchronization criteria for CRDNNs in [28].

Nevertheless, it is impossible for CNNs to realize synchronization
by themselves in many practical situations. Therefore, some control
schemes should be designed for synchronization of CNNs. Due to
greatly reducing the number of controlled nodes, a very effective
strategy called pinning control method is proposed for synchronization
of CNNs by adding controllers to a part of nodes [30–34]. In [30], the
adaptive exponential synchronization problem of neutral-type CNNs
with Markovian switching parameters was investigated by pinning
control. Zheng et al. [31] studied robust synchronization of the CNNs
by utilizing intermittent pinning control method. As is well-known,
there are very few works on pinning synchronization of CRDNNs [35–
38]. In [36], Liu et al. obtained some sufficient conditions for pinning
global μ-synchronization of CRDNNs. Wang et al. [37] proposed a
network model for CRDNNs with directed topology, and several criteria
on synchronization were derived for the proposed network model
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under pinning control technique.
Motivated by previous discussion, we devote to studying the

synchronization of spatial diffusion CRDNNs with and without multi-
ple time-varying delays by pinning control method in this paper. The
distinctive contributions are as follows. Firstly, we respectively estab-
lish two synchronization criteria for spatial diffusion CRDNNs with and
without multiple time-varying delays by selecting a fraction of nodes to
be pinned with negative feedback controllers. Second, some adaptive
strategies to update the pinning feedback gains are designed for
reaching synchronization.

2. Preliminaries

2.1. Notations

Let = (−∞, +∞) . P P P P0 ≤ ∈ (0 > ∈ , 0 < ∈ , 0 ≥ ∈ )n n n n n n n n× × × ×   

denotes that matrix P is symmetric and semi-positive (negative,
positive, semi-negative) definite. Ω x x x x x l k m= { = ( , ,…, ) | | < , = 1, 2,…, }m T k k1 2

represents an open bounded domain in m with smooth boundary Ω∂ .
λ (·)m (λ (·)M ) means the minimum (maximum) eigenvalue of the
corresponding matrix.

2.2. Some useful lemmas

Lemma 2.1 (see [31]). For any vectors α α, ∈ n
1 2  and positive

matrix Q ∈ n n× , the following matrix inequality holds:

α α α Qα α Q α2 ≤ + .T T T
1 2 1 1 2
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Lemma 2.2 (see [39]). Let Ω x x x x x l k m= { = ( , ,…, ) | |< , = 1,2,…, }m
T

k k1 2

and g x C Ω( ) ∈ ( )1 be a real-valued function which satisfies g x( ) | = 0Ω∂ .
Then
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Lemma 2.3 (see [40]). Let α A A A A∈ , , , ,1 2 3 4 be matrices with
suitable dimensions. Then the Kronecker product (denoted by ⊗) has
the following properties:

αA A A αA

A A A A A A A A

A A A A

A A A A A A A

(1)( ) ⊗ = ⊗ ( );

(2) ( ⊗ )( ⊗ ) = ( ) ⊗ ( );

(3)( ⊗ ) = ⊗ ;

(4)( + ) ⊗ = ⊗ + ⊗ .

T T T

1 2 1 2

1 2 3 4 1 3 2 4

1 2 1 2

1 2 3 1 3 2 3

3. Pinning control of spatial diffusion CRDNNs

3.1. Network model

A single RDNN is presented by
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where Ji corresponds to the constant external input; f (·)j represents
the activation function of the j-th neuron; w x t( , ) ∈i  is the state of the
i-th neuron at time t and in space x; bij stands for the weight of neuron
interconnections; a > 0i is the rate with which the i-th neuron will reset
its potential to the resting state when disconnected from the network
and external input; x x x x Ω= ( , ,…, ) ∈ ⊂m

T m
1 2  ; d > 0ik denotes the

transmission diffusion coefficient along the i-th neuron; n is the
number of neurons in the network.

The system (1) satisfies the following two conditions:

w x ϕ x x Ω( , 0) = ( ), ∈ ,i i (2)

w x t x t Ω( , ) = 0, ( , ) ∈ ∂ × [0, +∞),i (3)

where ϕ x ϕ x ϕ x( ), ( ),…, ( )n1 2 are continuous and bounded on Ω.
The following assumption will be needed throughout the paper.

A1) The neuron activation function f (·)j satisfies the Lipschitz
condition, i.e., for any ζ ζ, ∈1 2 , there exists constant ρ > 0j such that

f ζ f ζ ρ ζ ζ j n| ( ) − ( )| ≤ | − |, = 1, 2,…, ,j j j1 2 1 2

where |·| indicates the Euclidean norm.
By rewriting the system (1), we can get
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where
f w x t f w x t f w x t f w x t B b( ( , )) = ( ( ( , )), ( ( , )),…, ( ( , ))) , = ( )n n
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T

1 2 1 2 ,
D d d d A a a a= diag( , ,…, ), = diag( , ,…, )k k k nk n1 2 1 2 .

N identical nodes (4) are coupled into a CRDNNs with spatial
diffusion coupling which is shown as:
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where Γ γ= ( )ij n n× corresponds to the inner coupling matrix;
z x t z x t z x t z x t( , ) = ( ( , ), ( , ),…, ( , )) ∈i i i in

T n
1 2  is the state vector of node

i at time t and in space x; G G= ( )ij N N× stands for the coupling
configuration matrix which has the following definition:

G i j i j
G i j

> 0, if there is a connection from node to node ( ≠ ),
= 0, otherwise ( ≠ ),

ij

ij

⎧⎨⎩
and

∑G G i N= − , = 1, 2,…, ;ii
j j i

N

ij
=1 , ≠

c0 < ∈  represents the overall coupling strength; N denotes the
number of nodes in the network.

The network (5) satisfies the following conditions:

z x t x t Ω( , ) = 0, ( , ) ∈ ∂ × [0, +∞),i (6)

z x Φ x x Ω( , 0) = ( ) ∈ , ∈ ,i i
n (7)

where Φ x Φ x Φ x( ), ( ),…, ( )N1 2 are continuous and bounded functions on
Ω.

For system (1), suppose that w x t( , ) is an arbitrary solution, then it
satisfies (3) and
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where w x t w x t w x t w x t( , ) = ( ( , ), ( , ),…, ( , ))n
T

1 2 .
Throughout this paper, the network is said to achieve synchroniza-

tion via pinning control schemes if

z t w t i Nlim ∥ (·, ) − (·, )∥ = 0, for all = 1, 2,…, .
t

i
→+∞

2

Remark 3.1. Most of the published results about synchronization of
CRDNNs only focused on their state coupling [36–38]. However, very few
scholars have devoted to studying the synchronization of CRDNNs with
spatial diffusion coupling [35]. It is known to us that different diffusion of
each RDNN may have an important effect on other RDNNs in CRDNNs.
Hence, it is essential to consider synchronization of spatial diffusion
CRDNNs.
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