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ARTICLE INFO ABSTRACT

Communicated by Zidong Wang The traditional expectation maximization (EM) algorithm for the mixture model can explore the structural
regularities of a network efficiently. But it always traps into local maxima. A deterministic annealing EM
(DAEM) algorithm is put forward to solve this problem. However, it brings about the problem of convergence
speed. A deterministic anti-annealing expectation maximization (DAAEM) algorithm not only prevents poor
local optima, but also improves the convergence speed. Thus, the DAAEM algorithm is used to estimate
parameters of the mixture model. This algorithm always sets its initial parameter 3, by experience, which maybe
get trapped into meaningless results due to too small S, or converge to local maxima more frequently due to too
large Bo. A parameter selection method for 3y is designed. In our method, the convergence rate of the DAAEM
algorithm for mixture model is first derived from Jacobian matrix of the posterior probabilities. Then the
theoretical lower bound of f, is computed based on the convergence rate at meaningless points. In our
experiments we select f§y by rounding up the lower bound to the nearest tenth. Experiments on real and
synthetic networks demonstrate that the parameter selection method is valid, and the performance of the
DAAEM algorithm beginning from the selected parameter is better than the EM and DAEM algorithms for
mixture model. In addition, we find that the convergence rate of the DAAEM algorithm is affected by assortative
mixing by degree of a network.
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1. Introduction

Networks have gained significant attention for representing com-
plex systems, and analyzing them helps us understand the systems.
When we have no prior on networks, it is necessary to analyze them by
automatics. Many analysis techniques for these networks have emerged
in the past few years, and community detection [1] is a popular one. It
has become useful for many reasons, such as suppressing the complex-
ity of the whole network and identifying the key nodes in networks, etc.

Up to now, a huge amount of methods for the task of community
detection have been developed, including hierarchical clustering,
divisive clustering, modularity-based methods, etc. They just focus on
detecting tightly connected subgraphs. But complex networks may have
many other types of structures, including core-periphery, hierarchical,
multipartite structures, or the mixture of them, etc. Recently, some
models have been provided to detect a more wide variety of structures
besides tightly connected subgraphs. These models are mainly classi-
fied by two categories. One category is ones based on the stochastic
block model (SBM) [2], whose algorithms estimate parameters by the

Gibbs sampling method [3], the variational EM algorithm [4-6], the
variational Bayes methods [7], the belief propagation method [8], etc.
The time complexities of these algorithms are approximately O (mc?),
where m and c respectively denote the number of edges and clusters.
The other category is mixture model [9] for network exploring, whose
time complexity is O (mc). By contrast, the EM algorithm for mixture
model (EMMM) [9] is more efficient than the algorithms for models
based on the SBM.

However, it is well known that the traditional EM algorithm always
converges to poor local maxima. The DAEM algorithm [10] has been
provided to overcome local maximum problem. It starts with
P = p, ~ 0 and slowly increases f to 1. At each 3, the DAEM algorithm
executes the EM algorithm. This increases the convergence time,
especially on data with skewed mixing coefficients and large overlap
among clusters. The anti-annealing EM algorithm [11] starts from
B> 1 and slowly decreases it down to 1. It improves the speed by
restricting the amount of overlaps, but trends to converge to poor local
optima more frequently. The DAAEM algorithm [11] not only prevents
the EM algorithm from getting trapped into local optima, but also
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improves the speed of convergence. It starts from a small parameter
p =P, ~0, and slowly increases f§ beyond 1, up to a chosen upper
bound, and finally slowly decreases § down to 1.

In order to make the parameter estimating algorithm for mixture
model [9] converge to a better local optimum or an approximate global
optimum efficiently, we use the framework of the DAAEM algorithm to
estimate parameters of mixture model. The DAAEM algorithm for
mixture model is noted as DAAEMMM for short. As the DAEM
algorithm, the DAAEM algorithm needs to set an initial fy. In the
literature [10,11], the initial §, is always set experimentally. Ueda et al.
[10] confirmed that g, = 0.1 may be small enough, and f in the new
iteration is set as constant (constant is always set as 1.1 ~ 1.5) times of
B in the last iteration. Naim et al. [11] thought that it was necessary to
select a smaller S, for complex data, while a larger j, for simple data.
There is no study on how to set it theoretically. If we set a too small S,
the DAAEMMM algorithm may divide nodes into meaningless clusters
[12], such as the partition that each node belongs to each cluster with
equal probabilities. Once the algorithm converges to this case, it is
unable to escape from this point in subsequent iterations. If we set a
too large fBy, the DAAEMM algorithm is easier to converge to local
maxima. From the aspect of convergence property, the algorithm
beginning with the selected initial parameter 3, should not converge
to a meaningless clustering result point, which should be an unstable
fixed point of the DAAEMMM algorithm.

Some scientists have contributed to study fixed points of algorithms
by convergence analysis. The convergence rate is used to measure
whether a fixed point is stable. Parameters embedded in the conver-
gence rate are estimated by making meaningless fixed points be
unstable. Hessian matrix and Jacobian matrix are two popular tools
to compute the convergence rate. Lei Xu and Michael 1. Jordan
presented Hessian matrix of the log-likelihood function for Gaussian
mixture with respect to the collection of mixture parameters [13]. Jian
Yu et al. [14] executed the optimality test by computing Hessian matrix
of parameter mapping of the Fuzzy c-means algorithm. The formulas of
the Hessian matrix are too complicated to analyze the convergence
properties. Jacobian matrix has the same ability as the Hessian matrix
to judge whether an algorithm converges to a local maximum.
Chaomurilige et al. [15] provided a theoretical method for selecting
the fuzziness parameter in the Gustafson-Kessel algorithm using
Jacobian matrix analysis. It has been demonstrated that Jacobian
matrix is a more effective tool for convergence analysis, which is used
to select the parameters of an algorithm by making the convergence
rate at meaningless fixed points be not less than 1. But there is no study
on how to select f parameter of the DAAEM or DAEM algorithm using
Jacobian matrix. Here we provide a theoretical parameter selection
method for the initial parameter f, of the DAAEMMM algorithm,
which is also suitable to the DAEM algorithm for mixture model
(DAEMMM). In our method, the convergence rate of the DAAEMMM
algorithm is computed based on the Jacobian matrix of the posterior
probabilities. Then, a theoretical lower bound of parameter S, is
captained by analyzing the stability of fixed points according to the
convergence rate. The initial parameter [, is set according to this
theoretical lower bound value. In our experiments, 3, are selected by
rounding up the theoretical lower bound to the nearest tenth.

In this paper, we first use the DAAEM algorithm to estimate
parameters of mixture model for network exploring. Then we design
a method to get the theoretical minimal S, for the DAAEMMM
algorithm based on Jacobin matrix analysis. In outline, the paper is
organized as follows. In Section 2, we give a brief review of the EMMM
algorithm for exploratory analysis in networks. In Section 3, we analyze
the disadvantages of the EMMM algorithm on several real networks,
and then present a DAAEMMM algorithm for general structure
detection. In Section 4, we design a theoretical parameter selection
method for fy based on the convergence rate. Finally, experiments on
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synthetic and real networks validate the selected parameter according
to the theoretical lower bound of Sy from our provided method and
demonstrate the performance of the DAAEMMM algorithm. In addi-
tion, we test the relations between the convergence rate and the
structure of a network measured by assortative mixing by degree.
Finally, the conclusions are stated.

2. The EM algorithm of mixture model for network exploring

In this section, we first describe the mixture model for exploratory
analysis in networks. Then the EM algorithm of its parameter estima-
tion (EMMM) in directed networks [9] is inferred.

Structure detection based on mixture model [9] aims to deduce the
assignments of nodes in a network by fitting a model to an observed
network. Here we focus on the mixture model for directed networks,
and it is easy to extend to the case of undirected or weighted networks.
A network with N nodes is represented by an adjacency matrix A with
element A; =1 if there is an edge from node i to node j and 0
otherwise. Suppose that nodes of a network fall into ¢ communities and
model parameters are specified as the triplet ({g;}, {=,}, {6:}), where
the hidden variable g; indicates the group assignment of node i, 7,. the
fraction of nodes in group r, and 0,.; the probability that there is a
directed edge from nodes of group r to node i. The model parameters
{z,} and {6,;} satisfy the normalization conditions Zle 7= 1 and
N 0= 1

Assume that edges of a network are generated by a mixture of
underlying probability distribution. Each edge from i to j is generated
independently. First, the begin node i of a edge <i, j> selects its group
gi by a probability 7. Then a node 7 in group g; links to end node j by a
probability 6, ;. The likelihood of an observed network A can be written
as:

PrAlr, 0) = [] Priayiz, 0) = [1X tPrig=rin)

ij i r=1
[ Prasig = r. 60y = [1X 1= [ @p*.
J r=1 J
(€))

The logarithm of the likelihood in Eq. (1) is:

L=logPr(lz,0) = Y log Y [n, 11 (9,,-)/*:7].
i r=1 j ()

We often use the EM algorithm to estimate the parameters by
maximizing the log-likelihood L. The lower bound of L can be
computed by Jesen inequality from Eq. (2), noted as L.

L=7y qi,[log m+ Y Ajlog 94] - X 4y loga,,

ir J

(3)

where g;,- is the posterior probability that node i belongs to cluster r,
and it satisfies the normalization condition Y ¢ = 1.

By introducing the Lagrange multiplier to incorporate the con-
straint q in E step, the objective function becomes:

r =Z+/1[1 - Zq,.,].
r C)
By letting the derivative of L’ by gq;,- be zero in E step, the updating

equation for g;,- is inferred as follows:
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By introducing the Lagrange multipliers to incorporate the normal-
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