Author's Accepted Manuscript

Kernel-based dimensionality reduction using Renyi's α -entropy measures of similarity

A.M. Álvarez Meza, J.A. Lee, Michel Verleysen, G. Castellanos-Dominguez

www.elsevier.com/locate/neucom

PII: S0925-2312(16)31164-X

DOI: http://dx.doi.org/10.1016/j.neucom.2016.10.004

Reference: NEUCOM17616

To appear in: Neurocomputing

Received date: 7 April 2016

Revised date: 19 September 2016 Accepted date: 9 October 2016

Cite this article as: A.M. Álvarez Meza, J.A. Lee, Michel Verleysen and G Castellanos-Dominguez, Kernel-based dimensionality reduction using Renyi's α entropy measures of similarity, *Neurocomputing* http://dx.doi.org/10.1016/j.neucom.2016.10.004

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Kernel-based dimensionality reduction using Renyi's α -entropy measures of similarity

A.M. Álvarez Meza*, J.A. Lee[†], Michel Verleysen[†], and G. Castellanos-Dominguez*
*Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales
amalvarezme@unal.edu.co, cgcastellanosd@unal.edu.co

[†]Machine Learning Group - MLG, Université Catholique de Louvain,
Louvain-la-Neuve-Belgium
john.lee@uclouvain.be, michel.verleysen@uclouvain.be

Abstract

Dimensionality reduction (DR) aims to reveal salient properties of high-dimensional (HD) data in a low-dimensional (LD) representation space. Two elements stipulate success of a DR approach: definition of a notion of pairwise relations in the HD and LD spaces, and measuring the mismatch between these relationships in the HD and LD representations of data. This paper introduces a new DR method, termed Kernel-based entropy dimensionality reduction (KEDR), to measure the embedding quality that is based on stochastic neighborhood preservation, involving a Gram matrix estimation of Renyi's α -entropy. The proposed approach is a data-driven framework for information theoretic learning, based on infinitely divisible matrices. Instead of relying upon regular Renyi's entropies, KEDR also computes the embedding mismatch through a parameterized mixture of divergences, resulting in an improved the preservation of both the local and global data structures. Our approach is validated on both synthetic and real-world datasets and compared to several state-of-the-art algorithms, including the Stochastic Neighbor Embedding-like techniques for which DR approach is a data-driven extension (from the perspective of kernel-based Gram matrices). In terms of visual inspection and quantitative evaluation of neighborhood preservation, the obtained results show that KEDR is competitive and promising DR method.

Keywords: Dimensionality reduction, kernel methods, Renyi's α -entropy.

Download English Version:

https://daneshyari.com/en/article/4947995

Download Persian Version:

https://daneshyari.com/article/4947995

Daneshyari.com