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A B S T R A C T

Generating promising hypotheses plays a critical role in the success of multi-structure model fitting methods.
However, conventional multi-structure hypothesis generation strategies do not exploit the information derived
from the results of model selection to guide the subsequent hypothesis generation process. This leads to the
problem that these hypothesis generation strategies are often computationally expensive for generating
promising hypotheses, especially for heavily contaminated multi-structure data. To address this problem, we
first propose a guided sampling strategy to accelerate promising hypothesis generation process by using
information derived from the results of model selection on the fly. Then we present a Unified Hypothesis
Generation (UHG) framework, which effectively combines the conventional multi-structure hypothesis
generation strategy with the proposed guided sampling strategy by using a Markov Chain Monte Carlo process
based on a cooling schedule. Experimental results on public databases demonstrate that the proposed UHG
achieves significant superiority over several state-of-the-art sampling methods in terms of accuracy and
efficiency, especially on multi-structure data.

1. Introduction

Robust model fitting is a fundamental technique in computer
vision, which has widespread applications, such as action potential
classification [1], fundamental matrix estimation [2], motion segmen-
tation [3], face clustering [4], image denoising [5]. The task of robust
model fitting is to estimate the parameters of model instances in data.
More specifically, given a geometric model, robust model fitting
methods estimate the parameters and the number of model instances
from the input data.

Fig. 1 illustrates the line fitting problem: given an input data with
one or several lines generated by using a line model y kx b= + , robust
model fitting methods need to estimate the model parameters [k b, ]
and the number of lines in the input data. Fig. 1(a) shows the input
data including a model instance (i.e., a line) and Fig. 1(b) shows the
input data including three model instances (i.e., three lines). The data
points with Gaussian noise σ = 0.02 “lying” on some lines are called the
inliers of the lines. In contrast, the data points not belonging to any line
are called gross outliers. The inliers of one line usually are pseudo-
outliers of the other lines. A model instance is also called “a structure”
[6–8]. A single-structure data refers to the data containing only one
structure while a multi-structure data has multiple structures in the
data. Of course, the model is not restricted to a line, and it can be any
other geometric model such as circle, homography matrix, fundamental

matrix, etc.
Most robust model fitting methods (e.g., [6,9]) are mainly com-

posed of two steps: hypothesis generation and model selection.
Hypothesis generation is also called sampling, because the most
important step of hypothesis generation is sampling effective data
from input data. In order to increase the probability of sampling all-
inlier (i.e., inliers from the same structure) subsets, most hypothesis
generation methods (e.g., [9,7,8]) sample minimal subsets for generat-
ing hypotheses. The minimal subsets contain the minimum number p
of data points required to estimate a geometric model (e.g., p=2 for line
fitting, p=4 for homography matrix estimation). Some hypothesis
generation strategies (such as [10–12]), which only consider the
single-structure case, are called single-structure hypothesis generation
strategies. While some other hypothesis generation strategies (e.g.,
[7,8]), which work for both single-structure and multi-structure data,
are called multi-structure hypothesis generation strategies.

Many two-stage model fitting methods (such as [9,14–18,3]),
conducting hypothesis generation and model selection as two disjoint
stages, have been proposed to simultaneously estimate multiple
structures in data. These methods perform model selection after
generating a set of hypotheses. However, such two-stage model fitting
methods fail to work when the generated hypotheses do not contain
one clean solution, where it is obtained when at least one all-inlier
minimal subset is sampled for each model instance in data. To
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efficiently generate hypotheses for these fitting methods, several
sampling strategies (e.g., [7,19]) have been proposed to generate
promising hypotheses for multi-structure data. Nevertheless, there
are still some problems unsolved. For example, Proximity [19] will
break down if data fail to satisfy the assumption of spatial proximity;
while MultiGS [7] cannot generate an accurate clean solution for multi-
structure data heavily corrupted with outliers in a reasonable time,1

due to expensive computational cost during the hypothesis generation
process.

For these conventional multi-structure hypothesis generation stra-
tegies, hypothesis generation and model selection are two independent
processes. As a matter of fact, one important observation is that the
probabilities of generating promising hypotheses by these sampling
strategies usually increase progressively as the iteration progresses.
Thus, the process of generating promising hypotheses could be
efficiently accelerated, if the information (derived from the results of
model selection on the generated hypotheses) is properly applied to
guide the subsequent process of hypothesis generation. We note that
some hypothesis generation strategies (e.g., [10,20]) have been devel-
oped to guide their sampling processes by using the information
derived from the results of model selection. However, these methods
are hard to work properly for multi-structure data because they are
mainly designed for single-structure data, and they can result in
overfitting on multi-structure data (i.e., the inliers of one fitted
hypothesis include the inliers of multiple structures).

In this paper, we propose a Unified Hypothesis Generation (UHG)
framework that can efficiently generate promising hypotheses for
multi-structure data. In UHG, we propose a guided sampling strategy
(i.e., the local search), which effectively uses the information derived
from the results of model selection to accelerate the process of
promising hypothesis generation. To guide the sampling process of
the proposed guided sampling strategy, UHG also employs a conven-
tional multi-structure hypothesis generation strategy (i.e., the global
search). Therefore, UHG effectively combines these two sampling
strategies by using a Markov Chain Monte Carlo process based on a
cooling schedule.

Fig. 2 illustrates an example result of the proposed UHG by
employing the Proximity sampling [19] for global search, where the
Proximity sampling is reviewed in Section 2. The Barrsmith image pair
with two model instances are used for homography matrix estimation,
shown in Fig. 2(a) and (b). The proposed UHG firstly performs model
selection (Section 3.2.1) after newly generating a batch of hypotheses,
where a snapshot of the detected model instances is shown in Fig. 2(c).
The proposed guided sampling strategy in UHG then guides its
subsequent sampling process (Section 3.2.2) by using the information

obtained from the inliers of the detected model instances, even though
one true model instance is detected as two model instances initially
(marked in both blue squares and carmine circles). This process
significantly reduces the influence of outliers and thus increases the
probabilities of generating promising hypotheses. The final model
instances detected on the hypotheses generated by the proposed
UHG within the given time are shown in Fig. 2(d), where two
homography instances are accurately segmented.

The main contributions of this paper are two-fold: (1) We propose a
guided sampling strategy to generate promising hypotheses for multi-
structure data. The proposed sampling strategy guides the subsequent
sampling process by using the information derived from the detected
model instances that are updated by model selection on the fly. It
effectively increases the probabilities of generating promising hypoth-
eses. Moreover, we introduce two effective residual update schemes to
efficiently perform model selection for the proposed sampling strategy
after each new batch of hypotheses is generated. (2) We propose a
Unified Hypothesis Generation (UHG) framework. Under this new
framework, the conventional hypothesis generation strategy is success-
fully combined with the proposed sampling strategy by using a Markov
Chain Monte Carlo (MCMC) process with a cooling schedule.
Compared with conventional hypothesis generation strategies, UHG
is much more efficiently in generating promising hypotheses for multi-
structure data.

2. Related work

Sampling methods can be roughly grouped into random sampling
and guided sampling methods. Random sampling [6] is a widely used
sampling method, and has been adopted in many recently-proposed
model fitting methods (e.g., [9,21]) due to its simplicity. The sampling
processes of random sampling can be briefly described as: randomly
sample a minimal subset with p data points from the input data and
generate a hypothesis by using the sampled minimal subset. However,
random sampling is not an efficient and effective sampling method. The
probabilities of sampling all-inlier minimal subsets exponentially
decrease when the dimension of the model grows or the inlier rate of
input data reduces [7].

To improve the performance of random sampling, a number of
guided sampling methods have been proposed. Compared with random
sampling that assumes each data point has the same probability of
being an inlier, the guided sampling methods compute sampling weight
for each data point by using the domain knowledge (such as matching
scores, spatial proximity, etc). Each data point probably has different
sampling weight. The general sampling processes of guided sampling
can be summarized as: first compute sampling weights for input data,
then sample a minimal subset from input data according to the
computed sampling weights and generate a hypothesis by using the
sampled minimal subset. We review the related guided sampling
methods according to different domain knowledge used as follows.

Fig. 1. Examples of line fitting: (a) and (b) Input data with one line and three lines, respectively. (c) and (d) The fitting results of (a) and (b) obtained by the model fitting method KF
[13], respectively. The red numbers in [·,· ] are the estimated model parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article).

1 The time to obtain an acceptable solution varies with problem complexity, and the
“reasonable” time also varies depending on the type of tasks. Here, as in [8], five seconds
and ten seconds are chosen as indicative “reasonable time” for homography and
fundamental matrix estimation, respectively.
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