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A B S T R A C T

This work proposes a novel Situation-Aware FEar Learning (SAFEL) model for robots. SAFEL combines
concepts of situation-aware expert systems with well-known neuroscientific findings on the brain fear-learning
mechanism to allow companion robots to predict undesirable or threatening situations based on past
experiences. One of the main objectives is to allow robots to learn complex temporal patterns of sensed
environmental stimuli and create a representation of these patterns. This memory can be later associated with a
negative or positive “emotion”, analogous to fear and confidence. Experiments with a real robot demonstrated
SAFEL's success in generating contextual fear conditioning behavior with predictive capabilities based on
situational information.

1. Introduction

Learning to fear unpleasant or harmful stimuli from the environ-
ment is ubiquitous in nature. Fear can be defined as a brain's
mechanism for automatic learning and memorization of potential
threats to one's survival. It offers exceptional advantages over con-
scious-rational thinking during critical situations due to its involuntary
and automatic responses, leading to faster decision-making and
reaction in the face of danger [1,2], as well as increased focus and
attention [3]. Fear learning is also an important ally for environmental
adaptation as the brain constantly associates fear with newly experi-
enced dangers. Hence, it assists animals to learn and react to the new
patterns and threats of unfamiliar environments.

Fear learning supports not only survival and environmental adap-
tation, but also social adaptation (i.e., one's ability of adjusting its
behavior to the rules of its own society). The concept of society applies
to many animal species, where individuals feel an instinctive need to be
accepted by others of its kind. As belonging to a community can highly
increase one's chances of survival, the brain of many animal species
evolved to process social rejection as an aversive environmental
stimulus. Consequently, the brain triggers fear learning when an
individual observes disapproval from others towards its actions.

By being real agents that inhabit the physical world and interact
with human beings, autonomous robots are also susceptible to
environmental threats and to social adaptation. Hence, autonomous
robots could also take advantage of a mechanism inspired by fear
learning. Robot companions [4–7], for instance, are gaining more
space in our society as social entities and have shown a great potential

for applications in many areas (e.g., healthcare [8]). However, a
common issue with long-term robot companions is the rapid loss of
interest from their users, who get frustrated and lose motivation over
time as companions continue to perform pre-defined and repetitive
behaviors [5]. This poses a challenge to the broad development and
practical use of robot companions.

From the HRI (Human-Robot Interaction) point of view, robots'
social interaction becomes more believable and natural as they become
more adaptable and responsive to environmental cues [9,4,6]. As
humans, we expect others to be able to identify environmental factors
that can represent unpleasantness or danger to themselves and act
accordingly. Therefore, being able to properly express fear responses
could highly increase the believability of a long-term robot companion
[9].

Fear learning has been a strong source of inspiration for developing
more flexible and adaptive artificial intelligence [10–13]. The potential
of artificial intelligence based on fear-learning models is demonstrated
by its successful contribution to a variety of engineering and robotic
applications [14–29]. Despite its advances, research on artificial fear-
learning is still in its infancy and has several aspects with margin for
improvement, among which we can highlight situation appraisal.

In the real world, people react not only to individual environmental
stimuli (e.g. pain, smells, noises, location, light levels, etc.), but also to
contextual variation over time, also known as situation, which is
characterized by the temporal order and intensity variation of all
appraised stimuli in a given period of time (e.g., being in a forest at
night, with impaired visibility, and hearing animals' noises). Here, we
define the emotional outcome and evaluation of a situation as situation
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appraisal.
To the best of our knowledge, artificial fear-learning models

proposed to date do not substantially address situation appraisal,
which is a significant part of the brain's fear-learning system, and
essential for a organism to predict outcomes and adapt to threats and
environmental changes [30].

This paper proposes a novel hybrid computational model, named
SAFEL (Situation-Aware FEar Learning), which is based on the brain's
fear-learning system and incorporates the concept of situation aware-
ness from expert systems. SAFEL builds on our fear-learning model,
proposed in [31], which is inspired by three brain regions essential in
fear learning: the sensory system, the amygdala and the hippocampus,
along with a cognitive function of the brain known as the working
memory [2]. Here, we discuss the implementation of SAFEL's hippo-
campus and working memory modules, which are responsible for
simulating situation appraisal regarding fear. Experiments with a
NAO robot demonstrate that SAFEL has successfully generated fear-
conditioning behavior with predictive capabilities based on situational
information.

The main contributions of this work as compared to the state of the
art are:

1. Integration of a fear learning model with the concept of temporal
context. SAFEL performs threat predictions based on complex
temporal and contextual information. Existing fear memory models
either focus in the contextual or the temporal aspect, overlooking the
need of both skills for an artificial intelligent agent to properly react
to real-world threatening situations.

2. SAFEL is focused on real-world applications for artificial and
autonomous intelligence in robotics. Many existing fear-learning
models that are inspired by the real mechanisms of the brain focus
on providing a close-to-real emulation of brain functions without
addressing the practical usage of the model for artificial intelligence.

3. The successful integration of a symbolic rule-based platform for
situation management with a classification algorithm for memoriz-
ing and predicting threats based on complex temporal context.

This paper is organized as follows: Section 2 discusses related work.
Section 3 summarizes the biological background and neuroscientific
findings that have inspired SAFEL. Section 4 presents SAFEL's
modeling and implementation. Experimental methodology and results
are discussed in Section 5 and Section 6, respectively. The paper
concludes with Section 8, and also suggests future work.

2. Previous models of contextual fear conditioning

The idea of using models of emotion for improving autonomous
learning in artificial systems started with Picard's research in 1995
[32,33]. Picard's work originated one of the most recent branches of
computer science: affective computing. According to Picard [33],
affective computing tackles three aspects of artificial intelligence: (1)
the ability of machines to recognize and express emotions, (2) the
ability of machines to respond intelligently to human emotion, and (3)
the capability of machines to regulate and utilize emotions in order to
behave more intelligently and effectively. In this work, we focus on the
latter aspect of affective computing, though all the three aspects are
indirectly addressed.

A large range of approaches have been proposed for simulating
emotions in artificial agents, such as affective space models [34,35],
motivation-driven models [13], neuro-inspired models [10,12,36–38],
hormonal or homeostatic systems [39–42], among others [43,44] (for a
broader review on the varied approaches and challenges of affective
computing, we refer the reader to [45]). Here, we are particularly
interested in approaches addressing the temporal properties of context
applied to fear conditioning for providing robots with fast, efficient and
flexible decision-making.

One of the most influential works in artificial fear conditioning is
the brain emotional learning (BEL) model, proposed by Morén and
Balkenius [10]. Their model (Fig. 1) consists of interconnected
modules of artificial neural networks (ANNs) that simulate the role
of neural circuitries involved in fear learning. It receives two types of
inputs – environmental neutral stimuli and a reward signal – that are
processed by four simulated neural regions: the thalamus, the sensory
cortex, the amygdala and the orbitofrontal cortex.

The thalamus and sensory cortex simply relay input information to
the orbitofrontal cortex and amygdala and, together, compose the “low
and high roads” to the amygdala, respectively [2]. The sensory cortex
receives information from the thalamus, which in turn receives
information directly from the environment. As the thalamic pathway
is shorter, it provides the amygdala with low latency information about
environmental stimuli. On the other hand, information projected
through the thalamic-cortical pathway takes longer to reach the
amygdala, but provides a higher-level and more accurate representa-
tion of the sensed world.

The amygdala is responsible for assessing and predicting the
emotional value of stimuli, based on the significance of the accom-
panied reward. Finally, the orbitofrontal cortex is responsible for
inhibiting emotional associations of the amygdala that are no longer
valid. This model has been tested for the most basic effects of classical
conditioning – such as fear acquisition, fear extinction, blocking,
habituation and spontaneous recovery – showing satisfactory results.

The BEL model was later improved in [46], with the addition of a
module that simulates the contextual processing performed by the
brain's hippocampal regions. BEL's hippocampus module has four
main components: the Bind subsystem, the Mem system, the Match
system and the Context system. The Bind subsystem is responsible for
binding stimuli that are simultaneously detected. The Mem system
generates expectations about stimuli manifestation at specific loca-
tions. These expectations are later compared with the actual stimuli in
the Match system. Lastly, the Context system combines information
from the Match and Bind systems to generate a contextual code that
feeds the amygdala and orbitofrontal cortex.

With the aid of the hippocampal module, BEL is able to express fear
responses based on contextual information. For example, one of the
experiments performed in [46] consisted on presenting two different
stimuli, CS0 and CS1, sometimes separately and sometimes together.
All single presentations of either CS0 or CS1 were followed by a
reinforcing signal, whereas all simultaneous presentations were fol-
lowed by nothing. The model gradually learned to differentiate between

Fig. 1. Fear-learning model proposed by Morén and Balkenius [10]. Each component of
their model represents an ANN. Circles represent individual ANNs internal to the
respective component.
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