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A B S T R A C T

Existing methods for gait recognition mainly depend on the appearance of human. Their performances are
greatly affected by changes of viewing angle. To achieve higher correct classification rates for cross-view gait
recognition, we develop a coupled locality preserving projections (CLPP) method in this paper. It learns coupled
projection matrices to project cross-view features into a unified subspace while preserving the essential
manifold structure. In the projected subspace, cross-view gait features can be matched directly. By the virtue of
structure information, the learnt subspace is more robust to the view change. Experiments based on CASIA and
USF gait databases are conducted to verify the efficiency of our approach.

1. Introduction

Gait recognition aims to identify humans at a distance by inspecting
their walking manners. It has a wide range of application for visual
surveillance in public areas. However, in such environments there are
various factors significantly affecting the performance of gait recogni-
tion [1]. One of the most challenging factors is the view change [2].

A variety of approaches have been proposed to tackle the view issue.
These approaches fall into three categories: 3D gait model reconstruc-
tion based approach [3–5], view-invariant approach [6–8], and learn-
ing mapping or projection relationships of gait across views approach
[9–12]. The third category is further divided into two types: view
transformation-based and subspace-based approaches. Among these
methods, subspace-based approaches, with the advantage of high
efficiency and convenience in application, attract a lot of attentions in
recent years. For cross-view gait recognition, CCA [12] is one of the
most popular approaches, which projects gait features from different
views into two subspaces such that they have the largest correlation.
And gait features are matched by CCA correlation strength directly.
However, CCA needs exactly same amount of samples under different
views in training process, which is impractical in real world.

Coupled metric learning (CML) [13,14] is another typical method.
It seeks a common subspace where features of cross-view gait could be
measured. However, existing methods based on CML do not take into
account each collection's own manifold structure while constructing the
relationship between different views. For example, in training process,
the originally neighboring points in set X or Y may be apart after being
projected; then in testing process, the points may be projected in
unexpected direction, since the original local relationship in each data

set was not preserved. As shown in Fig. 1, the distance of projected
points z4 and z5 from different classes may be closer than that of z2 and
z5 from the same class.

In this work, we manage to seek a coupled projections approach
which is more suitable for classification of cross-view gait data. On
basis of CML, we attempt to preserve the manifold structure of gait
features in each view while simultaneously maximize the relevance of
gait features from two different views. The coupled projection matrices
are firstly learnt to map original feature spaces into a unified subspace.
Then in the learnt subspace, we measure the projected features
obtained from gallery and probe gait sequences in Euclidean distance.

The key contributions of this paper can be summarized as follows.

• A novel coupled projections algorithm named Coupled Locality
Preserving Projections (CLPP) is proposed, which can project
sample points from two different viewing spaces into a unified
subspace while preserving the manifold structure of intra-view and
correlation of inter-view.

• This paper proposed a practical approach calculating the inter-view
similarity matrix by searching the max-weighted path, which avoid
being simply substituted by intra-view similarity matrix.

• To further evaluate effectiveness of the proposed method, extensive
experiments are carried out for cross-view gait recognition under
various scenarios which are quite common in real world.

The rest of this paper is organized as follows. Related works are
discussed in Section 2. In Section 3, we briefly review the CML based
approach and then introduce our proposed approach formally. Feature
presentation, extraction and classification of gait data are described in
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Section 4. Experimental results are shown in Section 5 and conclusions
are drawn in Section 6.

2. Related work

2.1. Cross-view gait recognition

Current research on gait recognition across various viewing angles
falls into three categories. The approaches in the first category rely on
the reconstructed 3D gait model [3–5,15,16]. Bodor et al. [3] computed
a 3D visual hull model using gait silhouettes from multiple views.
Taking advantage of 3D visual hull model, they could reconstruct gait
features under any required view. Zhao et al. [15] reconstructed a 3D
human skeleton model by multiple cameras. From 3D models, the
lengths of key segments were extracted as static features and motion
trajectories of lower limbs were extracted as dynamic features. Linear
time normalization was exploited for matching and recognition.
Iwashita et al. [16] created a spatio-temporal 3D gait database directly
to synthesize gait sequence at each viewpoint. By comparing the gait
features with those in the database, the person was identified and his
walking direction was estimated. All these approaches achieved high
accuracy in their experiments. However, on account of expensive
computation and complex camera calibration, this family of ap-
proaches is only suitable for a fully controlled and cooperative multi-
camera environment such as a bio-metric tunnel [5].

The second category [6–8,17] is to extract view-invariant gait
features. Jean et al. [6] proposed a method to compute view normalized
feet and head 2D trajectories as view-invariant gait features. By
homography based transformation, the trajectories were normalized
in a lateral viewpoint for gait recognition. Goffredo et al. [8] proposed
self calibrating view-invariant gait recognition based on human joint's
position estimation and viewpoint rectification. Angular measurements
and trunk spatial displacement were derived from the rectified limbs'
poses and used as a view-invariant gait feature. Kusakunniran et al.
[17] transformed gait silhouettes from arbitrary view onto the canoni-
cal view using domain transformation. Procrustes mean shape was
extracted as feature to measure gait similarity. When difference
between two views was large, these methods can still perform
efficiently. However, these methods in the category are not applicable
for front view because the gait feature from front view could not be
transformed onto side view.

The third category learns mapping or projection relationship of
gaits across views through a training process. The learnt relationships
will normalize gait features from different views into shared or
associated subspace(s) before gait similarity is measured. Different
from the first category, the third category needs only one simple

camera. The relationship between gait data from different views is
established through the learning process. Compared with the second
category, the third category is more efficient and stable. In addition,
there is no limitation to the view point. Recent researches in the third
category mainly rely on view transform model (VTM) [9–11,18,19] and
subspace learning [12,20–24]. VTM was introduced [18] to transform
gait features from one view into another view. Frequency-domain gait
features from different views were used to form a large matrix. Then
the matrix was factorized by adopting singular value decomposition
(SVD) to establish the VTM. Kusakunniran et al. [10] created a VTM
using support vector regression based on local dynamic feature
extraction. Sparse regression-based VTM was also proposed [11] to
obtain stable model for VTM construction. Lately, Muramatsu et al.
[19] developed an arbitrary view transform model (AVTM) by combin-
ing aspects of both first and third categories. 3D gait visual hulls were
established and used to generate training gait sequences under any
required views. Then VTM was constructed to transform features.

Recently, subspace learning based approaches have been adopted to
transform the gait features obtained from various viewing spaces into a
shared feature space. Bashir et al. [12], using canonical correlation
analysis (CCA), learnt maximally correlated feature subspaces and
employed correlation strength to measure gait similarity. A view-
invariant discriminative projection (ViDP) method was introduced
[22] to learn a low dimensional feature subspace. It was implemented
by iteratively learning the low dimensional geometry and finding the
optimal projection according to the geometry. Hu [23] proposed an
uncorrelated multilinear sparse local discriminant canonical correla-
tion analysis (UMSLDCCA) approach to model the correlations of gait
features from different viewing angles. A tensor-to-vector projection
(TVP) was adopted to extract gait features for measuring similarity.
Xing et al. [24] proposed complete CCA (C3A) to overcome the singular
problem of covariance matrix and alleviate the computational burden
of high dimensional matrix for typical gait image data. Compared with
VTM, subspace learning based methods can cope with feature mis-
match across views and are more robust against feature noise.

2.2. Subspace learning

Subspace learning sheds light on various tasks in computer vision
and multimedia. It projects the original feature space(s) to a new
subspace, wherein specific statistical properties can be well preserved.
The representative approaches include principal component analysis
(PCA) [25], Linear Discriminant Analysis (LDA) [26] and Locality
preserving projections (LPP) [27]. PCA is an unsupervised dimension
reduction algorithm, while LDA is a supervised one. LPP can either be
supervised or unsupervised by changing similarity matrix. LPP has
been applied in many applications. However, it does not work well
when data are from two different sets (such as gait data from two
different views). The main reason is that the similarity matrix could not
be constructed well between two different sets.

CCA is probably the most popular two-view subspace learning
method due to its wide-spread use in cross-view biometric recognition
[28,29], cross-media retrieval [30,31] and some other problems [32].
Li et al. [29] applied CCA to face recognition based on non-correspond-
ing region matching. An et al. [32] used regularized CCA (RCCA) in
conjunction with a reference set for person re-identification. Luo et al.
[30] developed tensor CCA (TCCA) by analyzing the high-order
covariance tensor over the data from all views. A more reliable common
subspace shared by all features could be obtained.

Besides CCA, there are some other methods for two-view subspace
learning. Sharma and Jacobs [33] used partial least squares (PLS) to
linearly map images from different modalities to a common linear
subspace in which they are highly correlated. Tenenbaum and Freeman
[28] proposed a bilinear model (BLM) to derive a unified space for
cross-modal face recognition. Li et al. [13] proposed coupled metric
learning (CML) approach to learn a common space in which degraded

Fig. 1. Neighboring nodes in same view scattered after mapped into a unified space.
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