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A B S T R A C T

There are well-known limitations and drawbacks on the performance and robustness of the feed-forward, fully-
connected Artificial Neural Networks (ANNs), or the so-called Multi-Layer Perceptrons (MLPs). In this study we
shall address them by Generalized Operational Perceptrons (GOPs) that consist of neurons with distinct (non-)
linear operators to achieve a generalized model of the biological neurons and ultimately a superior diversity. We
modified the conventional back-propagation (BP) to train GOPs and furthermore, proposed Progressive
Operational Perceptrons (POPs) to achieve self-organized and depth-adaptive GOPs according to the learning
problem. The most crucial property of the POPs is their ability to simultaneously search for the optimal operator
set and train each layer individually. The final POP is, therefore, formed layer by layer and in this paper we shall
show that this ability enables POPs with minimal network depth to attack the most challenging learning
problems that cannot be learned by conventional ANNs even with a deeper and significantly complex
configuration. Experimental results show that POPs can scale up very well with the problem size and can
have the potential to achieve a superior generalization performance on real benchmark problems with a
significant gain.

1. Introduction

Learning in the broader sense can be in the form of classification,
data regression, feature extraction and syntheses, or function approx-
imation. For instance the objective for classification is finding out the
right transformation of the input data (raw signal, data or feature
vector) of each class to a distinct location in N-dimensional space that
is far and well-separated from the others where N is the number of
classes. Therefore, the main challenge in learning is to find out the right
transformation (linear or nonlinear) or in general, the right set of
consecutive transformations so as to accomplish the underlying learn-
ing objective. For this purpose most existing classifiers use only one or
few (non-)linear operators. The most typical example is Support Vector
Machines (SVMs) where one has to make the critical choice of the
(non-)linear kernel function that will be used and subsequently define
appropriate parameters. Even if one can optimize the performance of
the classifier with respect to the kernel function’s parameters, choosing
an inappropriate kernel function can lead to far inferior performance,
when compared to the performance that can be achieved by using the
kernel function fitting to the characteristics of the problem at hand.
Consider for instance, two sample feature transformations (FS-1 and
FS-2) illustrated in Fig. 1 where for illustration purposes features are

only shown in 1-D and 2-D, and only two-class problems are
considered. In the case of FS-1, the SVM with a polynomial kernel in
quadratic form would make the proper transformation into 3-D so that
the new (transformed) features are linearly separable. However, for FS-
2, a sinusoid with the right frequency, f, should be used instead.
Therefore, especially in real and complex problems a high level of
operational diversity, which can only enable the right (set of) trans-
formations is of paramount importance.

In biological learning systems, this is addressed in the neurons at
the cellular level. As shown in Fig. 2, in the mammalian nervous
system, each neuron conducts the electrical signal over three distinct
operations: 1) synaptic connections in Dendrites: an individual opera-
tion over each input signal from the synapse connection of the input
neuron’s axon terminals, 2) a pooling operation of the operated input
signals via spatial and temporal signal integrator in the Soma, and
finally, 3) an activation in the initial section of the Axon or the so-called
Axon hillock: if the pooled potentials exceed a certain limit, it
“activates” a series of pulses (called action potentials). As shown in
the right side of the figure, each terminal button is connected to other
neurons across a small gap called a synapse. The physical and
neurochemical characteristics of each synapse determine the signal
operation which is nonlinear in general [1,2] along with the signal
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strength and polarity of the new input signal. Information storage or
processing is concentrated in the cells’ synaptic connections or more
precisely through certain operations of these connections together with
the connection strengths (i.e., weights) [1]. Such biological neurons or
neural systems in general are built from a large diversity of neuron
types varying entirely or partially structural, neurochemical and
electrophysiological properties [4–9]. For instance in mammalian
retina there are roughly 55 different types of neurons to perform the
low-level visual sensing [7]. The functions of the 22 of them are already
known and a cell defined as a “type” by structural criteria carries out a
distinct and individual physiological function (operator). Accordingly
in neurological systems, several distinct operations with proper weights
(parameters) are created to accomplish such diversity and trained in
time to perform or “to learn” many neural functions. Neural networks,
both biological and artificial with higher diversity of computational
operators have more computational powers [5,10–13] and it is also a
fact that adding more neural diversity allows the network size and total
connections to be reduced [9].

Conventional ANNs were designed to simulate biological neurons;
however, at the best ANN models are based only loosely on biology.
The most typical ANN neuron model is McCulloch-Pitts [14] which is
mainly used in many feed-forward ANNs such as multi-layer percep-
trons (MLPs) [33]. As in Eq. (1), in this formal model an artificial
neuron performs linear summation scaled with the synaptic weights. So
the synaptic connections with distinct neurochemical operations and
the integration in the Soma are modelled solely as a linear transforma-
tion (i.e. the linear weighted sum) followed by a possibly nonlinear
thresholding function, f(.), also called as the activation function.
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It is obvious from Eq. (1) that this model is indeed a limited and
crude model of the biological neurons and this is one of the reasons

that render ANNs having a high variation on their learning and
generalization performances in many problems [15,16]. There have
been some attempts in the literature to modify MLPs by changing the
neuron model and/or conventional BP algorithm [17–19], however,
their performance improvements were not significant in general. Even
though the network topology [20–22] or the parameter updates [24]
were optimized according to the problem in hand, such approaches still
inherit the main drawback of MLPs, i.e., they employ the conventional
neuron model described in Eq. (1). This is also true for other ANN
topologies such as recurrent neural networks, long short-term memory
networks and convolutional neural networks [23]. Another well-known
feed-forward and fully-connected ANNs are the Radial Basis Functions
(RBFs) [11,12] which employ a set of RBFs each of which is embedded
in a hidden neuron. The most typical RBF is Gaussian and, thanks to
this nonlinear operator RBF networks promise a faster learning
capability than the MLPs. However, they still suffer from the same
major problem of incapability to approximate certain functions or
discriminate certain patterns [25] unless (sometimes infeasibly) large
network configuration is used because they use only one operator, the
RBF, regardless of the problem in hand. This is also evident on the
recent studies on MLPs [26–28]. Particularly [27] focuses on Deep and
Shallow Architecture of Multilayer Neural Networks and their limita-
tions. The two main questions that we want to answer in this paper are:
“Can we learn highly complex transformations by using small,
minimal-depth network topologies? ” and “How can we efficiently
form networks that can adapt to both the nature and the complexity of
the problem at hand with proper operators? ”

We believe that the answers for these questions are hidden in the
nature of the basic processing units (i.e. neurons) used to build our
learning model. In order to address the aforementioned drawbacks and
especially accomplish a generalized model of biological neurons with
superior operational diversity, in this paper we shall first present
Generalized Operational Perceptrons (GOPs) that can encapsulate
many linear and nonlinear operators. Contrary to MLPs, each neuron
in a GOP can perform a distinct operation over its input signals. This
mimics a biological neuron cell with a distinct neurochemical char-
acteristics of its synaptic connections each with a certain strength
(weight). A neuron (node) has only one operator and hence it is called
the nodal operator that uses the same function but with a different
parameter (weight) for each neuron connection from the previous
layer. The outputs of the nodal operators will then be integrated with a
pooling operator, which contrary to MLPs, can be any proper
integrator besides summation. Finally, a similar flexibility is also
allowed for the activation operator (function). Thus, each GOP neuron
can have any operator set (nodal, pool and activation) where each
operator is selected among a library of operators to maximize the
learning performance.. Finding out the optimal operator set for each
neuron is crucial for GOPs. In this study our primary objective is to
design a minimal depth GOP with the least number of hidden layers
while it can learn a complex problem with the desired accuracy. In
order to achieve this we shall then propose the Progressive Operational
Perceptrons (POPs). POPs are heterogeneous GOPs that are self-
organized and depth-adaptive according to the learning problem. As
the name implies they are created progressively, layer by layer, while

Fig. 1. Two sample feature synthesis performed on 2-D (FS-1) and 1-D (FS-2) feature
spaces.

Fig. 2. A biological neuron (left) with the direction of the signal flow and a synapse (right).
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