
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Efficient interpretable variants of online SOM for large dissimilarity data

Jérôme Mariettea,⁎, Madalina Olteanub, Nathalie Villa-Vialaneixa,⁎

a MIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France
b SAMM, EA 4543, Université Paris 1, F-75634 Paris, France

A R T I C L E I N F O

Communicated by Y. Gu

Keywords:
SOM
Sparse methods
Kernel
Dissimilarity
K-PCA
Nyström

A B S T R A C T

Self-organizing maps (SOM) are a useful tool for exploring data. In its original version, the SOM algorithm was
designed for numerical vectors. Since then, several extensions have been proposed to handle complex datasets
described by (dis)similarities. Most of these extensions represent prototypes by a list of (dis)similarities with the
entire dataset and suffer from several drawbacks: their complexity is increased – it becomes quadratic instead of
linear –, the stability is reduced and the interpretability of the prototypes is lost.

In the present article, we propose and compare two extensions of the stochastic SOM for (dis)similarity data:
the first one takes advantage of the online setting in order to maintain a sparse representation of the prototypes
at each step of the algorithm, while the second one uses a dimension reduction in a feature space defined by the
(dis)similarity. Our contributions to the analysis of (dis)similarity data with topographic maps are thus
twofolds: first, we present a new version of the SOM algorithm which ensures a sparse representation of the
prototypes through online updates. Second, this approach is compared on several benchmarks to a standard
dimension reduction technique (K-PCA), which is itself adapted to large datasets with the Nyström
approximation.

Results demonstrate that both approaches lead to reduce the prototypes dimensionality while providing
accurate results in a reasonable computational time. Selecting one of these two strategies depends on the dataset
size, the need to easily interpret the results and the computational facilities available. The conclusion tries to
provide some recommendations to help the user making this choice.

1. Introduction

1.1. State-of-the art on SOM for (dis)similarity data

Over the years, the self-organizing map (SOM) algorithm [1] was
proved to be a powerful and convenient tool for clustering and
visualizing data [2–6]. While the original algorithm had been designed
for numerical vectors, the available data in the applications became
more and more complex, being frequently too rich to be described by a
fixed set of numerical attributes only. This is the case, for example,
when data are described by relations between objects (individuals
involved in a social network) or by measures of resemblance/dissem-
blance which are context specific (see [7,8] for similarities between
categorical sequences, [9] for similarities between microbial diversity
distributions, [10] for similarities in gene expression data).

During the past twenty years, the SOM algorithm was extended to
handle non numerical data. For example, SOM was adapted to
categorical data analysis, by using a method similar to Multiple
Correspondence Analysis in [11]. Another solution, called median
SOM [12], addressed the issue of data described by pairwise relations

(similarities or dissimilarities): in this solution, the standard computa-
tion of the prototypes is replaced by an approximation within the
original dataset. However, as prototypes are chosen among the data,
their representation is very restrictive. In order to increase the
flexibility of the prototypes, [13] proposed to represent a class by
several prototypes, all chosen among the original dataset. But, this
method seriously increases the computational time, while prototypes
remain restricted to the original dataset and may generate possible
sampling or sparsity issues.

A very different approach to handle relational data consists in
relying on a (pseudo-)Euclidean framework, following the results of
[14] (for data described by a kernel) or of [15] (for dissimilarity data).
This approach was developed in the framework of kernel SOM (see [16]
for the online version and [17] for the batch version), and in the
framework of relational SOM (see [18] for the online version and [19]
for the batch version). Kernel SOM and relational SOM are equivalent
if the dissimilarity in relational SOM is the squared distance induced by
the kernel. The key idea of this approach is to express prototypes as
convex combinations of the images of the original data x()i i n=1,…, in a
(pseudo-)Euclidean space in which the data are (implicitly) embedded

http://dx.doi.org/10.1016/j.neucom.2016.11.014
Received 5 April 2016; Received in revised form 22 September 2016; Accepted 11 November 2016

⁎ Corresponding authors.

Neurocomputing xx (xxxx) xxxx–xxxx

0925-2312/ © 2016 Elsevier B.V. All rights reserved.
Available online xxxx

Please cite this article as: Mariette, J., Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.11.014

http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.11.014
http://dx.doi.org/10.1016/j.neucom.2016.11.014
http://dx.doi.org/10.1016/j.neucom.2016.11.014

by the kernel (or the dissimilarity): as stated in [20,21], this solution
yields several drawbacks due to the large dimensionality of the
embedding space (which is equal to the number of observations, n).
Firstly, the complexity (in n) is strongly increased and becomes at least
quadratic. As stressed in [19], algorithms will be slow for datasets with
10,000 observations and impossible to run on a normal computer for
100,000 input data. Secondly, the results are highly unstable: especially
in the online (also called stochastic) version of the algorithm, two
different runs of the method can provide very different results. Thirdly,
one of the most important features of the SOM algorithm is lost: in
standard numerical SOM, clusters are represented by a single proto-
type valued in the data space. These prototypes help to interpret the
obtained clusters and thus the overall map organization. In kernel/
relational SOM, prototypes are given as n coefficients that correspond
to a resemblance with each of the n observations: they do not
correspond themselves to an observation in the original data space
and as such, prototypes are not much more informative than the
clustering itself.

In conclusion, kernel and relational extensions of the standard
SOM algorithm are hardly practicable when the dataset is large. This is
due partly to the number of observations, but also to the dimensionality
of the (embedded) data which is directly related to this number. To
address this issue, strategies usually used to handle large datasets or
datasets with a high dimensionality are useful and they can even be
combined.

1.2. Review of methods for large datasets and high dimensional
datasets

Different strategies were developed and are available in the
literature to handle large datasets (when the number of observations
is large) and high-dimensional datasets (when the dimension of the
dataset is large). For large datasets, standard approaches include (i)
divide and conquer approaches [22–24] in which data are split into
several bits of data which are processed separately. The results are
aggregated afterwards to obtain a final solution which is supposed to
well approximate the solution that would have been obtained if the
entire dataset had been processed at once; (ii) subsampling methods
[25–29], which consist in using a restricted subset (usually carefully
designed) of the original data, in order to approximate the solution that
could have been obtained with the entire dataset and (iii) online
updates [30,31], in which the results are updated with sequential steps,
each having a low computational cost.

A particular case of the subsampling strategy is the Nyström
approximation [32], which consists in sampling a small number of
rows/columns in square matrices and in obtaining an approximation of
its eigendecomposition at a very reduced computational cost. The
eigendecomposition is even exact when the matrix is of low rank (when
the size of the subsample is larger than the rank of the matrix). This
method is frequently used for kernel and dissimilarity-based algo-
rithms.

For high-dimensional data, the strategies are a bit different and
include (i) sparse approaches [33,34], in which a subset of the
variables is selected to build the final predictive model. This subset
can be obtained from sequential exploration (stepwise strategies), from
approximation heuristics or by using a sparse penalty term within the
model (LASSO); (ii) dimension reduction (DR) techniques, that can be
linear (PCA for instance or random projections as in [35]) or nonlinear
[36]. DR methods embed the data in a small dimensional space and are
usually mainly used for visualization and exploratory analysis.
However, if the embedding can be obtained at a low cost, it can be
used as an approximation of the high-dimensional dataset on which
more costly algorithms may be applied. SOM itself is a dimension
reduction method but, as stressed before, the computational complex-
ity of its kernel and relational versions is high. Finally, a particular case
of DR techniques is model-based clustering methods, which use

mixture distributions and embed the data in a low-dimensional sub-
space that is the best suited for clustering (see [37] for a review).

1.3. Kernel/relational extensions for large datasets

Several extensions for kernel and relational data of the standard
SOM algorithm, or of related kernel/relational algorithms (such as,
e.g., k-means, LVQ, topographic maps…) have already been proposed
in the literature. They use ideas coming from the strategies handling
large and/or high-dimensional datasets cited above. Most of them seek
a simplified/sparse representation of the prototypes and/or a reduced
computational time.

In the relational k-means framework [38], proposed a sparse
extension of the batch algorithm: every prototype is represented by
at most K (K fixed) observations by cluster, that are selected at each
step of the algorithm. In the supervised framework [21], used a similar
strategy for batch LVQ, by selecting the most representative observa-
tions (with different methods to obtain them, including approximation
heuristics and L1 penalty) in every cluster and at each step of the
algorithm. A similar method was used in [39], combined with the
Nyström approximation of the LVQ algorithm, in order to obtain
sparse prototypes at very low computational cost. The Nyström
approximation was also used for obtaining faster versions of topo-
graphic mapping methods [40,41] and for reducing the computational
cost of the clustering. Another subsampling strategy was used in a
nonlinear (kernel) DR framework to allow processing large datasets, in
[42].

However, these approaches do not lead to a simplified (and thus
interpretable) representation of the prototypes. Furthermore, all of
them are restricted to the batch framework and most of them are
performed after each iteration of a batch algorithm, i.e., after all
observations have been processed at least once. An alternative to these
methods consists in splitting the data into several subsets on which
independent algorithms are trained: in [19], the complexity is reduced
using iterative “patch clustering” that mixes “divide and conquer” and
“online updates”methods. First, the data are split into B patches of size
nB (n⪡ , B fixed). A prototype-based clustering algorithm in batch
version (neural gas or SOM) is then run on a patch t. The resulting
prototypes, which may be viewed as compressed representations of the
data already seen, are then added as new data points to the next patch,

t+1. Moreover, the full vector of coefficients is replaced by the Q closest
input data (Q fixed). With this method, linear time and constant space
representation are obtained but the sequential training may influence
the final result since all observations are not processed evenly.

In the same line of thoughts [43], propose a bagging approach for
kernel SOM. Data are split into B subsamples of size nB (n⪡ , B fixed),
the online kernel SOM is trained on each subsample and, after training,
the most representative Q observations are chosen for each prototype
(Q fixed). Eventually, a final map is trained on the resulting most
representative observations. In this method, parallel computing tech-
niques can be used for reducing the computational time. However, the
results of the B trained SOMs are not used as such but only to select the
most representative observations in the dataset.

1.4. Contributions of the article

In the present article, we propose and compare two methods to
obtain sparse prototypes and a reduced computational cost in the
online SOM algorithm. The first one uses a reduction dimension in the
embedding space, which can be efficiently performed with Nyström
technique. This method combines ideas coming from the high dimen-
sion and the large data problems. However, it is not specific to the
online setting. We thus compared it with another approach which takes
advantage of the online framework to provide sparse prototypes at all
iteration steps of the algorithm: the coefficients are interpreted
similarly to an amount of mass and the most important observations

J. Mariette et al. Neurocomputing xx (xxxx) xxxx–xxxx

2

Download English Version:

https://daneshyari.com/en/article/4948061

Download Persian Version:

https://daneshyari.com/article/4948061

Daneshyari.com

https://daneshyari.com/en/article/4948061
https://daneshyari.com/article/4948061
https://daneshyari.com

