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a b s t r a c t

Both subspace learning methods and feature selection methods are often used for removing irrelative
features from high-dimensional data. Studies have shown that feature selection methods have inter-
pretation ability and subspace learning methods output stable performance. This paper proposes a new
unsupervised feature selection by integrating a subspace learning method (i.e., Locality Preserving
Projection (LPP)) into a new feature selection method (i.e., a sparse feature-level self-representation
method), aim at simultaneously receiving stable performance and interpretation ability. Different from
traditional sample-level self-representation where each sample is represented by all samples and has
been popularly used in machine learning and computer vision. In this paper, we propose to represent
each feature by its relevant features to conduct feature selection via devising a feature-level self-re-
presentation loss function plus an ℓ2,1-norm regularization term. Then we add a graph regularization
term (i.e., LPP) into the resulting feature selection model to simultaneously conduct feature selection and
subspace learning. The rationale of the LPP regularization term is that LPP preserves the original dis-
tribution of data after removing irrelative features. Finally, we conducted experiments on UCI data sets
and other real data sets and the experimental results showed that the proposed approach outperformed
all comparison algorithms.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In data mining and machine learning, high-dimensional data
are often extracted to describe the diversity of data, the process
readily leads to the issue of curse of dimensionality [1,2]. However,
the high-dimensional data usually have a low-dimensional struc-
ture. Thus a lot of efforts have designed dimensionality reduction
methods (including feature selection methods and subspace
learning methods) to search for such low-dimensional structure by
reducing the dimensions of high-dimensional data [3–5].

Dimensionality reduction methods are usually divided into feature
selection methods [6,7] and subspace learning methods [8,9]. Feature
selection methods are widely used for reducing the dimensions of data
to output a subset of features [10,11]. That is, feature selection methods
select a subset of features in accordance with criteria, such as distin-
guishing features with good characteristics and correlating to the
predefined goal. The state-of-the-art feature selection methods include

filter methods [12–14], wrapper methods [15,16] and embedded
methods [17–20]. Feature selection methods directly removing a subset
of features lead to interpretation but may lose information, so the
performance of feature selection methods are unstable. Fortunately,
subspace learning methods [9,21,22] have been designed to map all
features into a low-dimensional space and also remove the noise and
outliers inhere in data. In this way, subspace learning methods can
achieve stable performance to deal with high-dimensional data. For
example, Zhu et al. proposed to first conduct subspace learning to
convert original data into low-dimensional Hamming subspace, and
then to consider the correlations between the original space and the
group effect of the features in training data [22]. Motivated by the
above observation, one can integrate subspace learning methods into
the framework of feature selection, to yield both the interpretation
ability and stable performance.

In this paper, we propose a new unsupervised Graph Self-Re-
presentation Sparse Feature Selection (shorted for GSR_SFS)
method, to address the above limitation. We first propose to re-
present each feature by its relevant features, which includes a
feature-level self-representation loss function and an ℓ2,1-norm
regularization term in a sparse way. The rationale of the feature-
level self-representation loss function is that the more important
the feature is, the more it has to the chance that represents other
features jointly. Similarly, the unimportant features should not
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participate to represent other features. The ℓ2,1-norm regulariza-
tion term penalizes all coefficients in the same row of the re-
gression matrix together for joint selection or un-selection in
predicting the response variables. Then, we add a graph regular-
ization term into the resulting feature selection model to conduct
subspace learning. The goal of the graph regularization term is to
improve the stability of our feature selection model by preserving
the local structures of data in the low-dimensional space. Fur-
thermore, we propose an efficient Alternating Direction Method
Multipliers (ADMM) method [23] to solve the proposed objective
function. The proposed optimization method enables the GSR_SFS
method to be used in the large-scale data sets.

The contributions of this paper are two-fold:

� The property of self-representation is not a new concept and
has been popularly used in machine learning and computer
vision, such as sparse coding [22,24] and low-rank [25,26].
However, previous literatures [27,28] focused on the sample-
level self-representation where each sample is represented by
all samples. In this paper, we propose to represent each feature
by its relevant features to conduct feature selection.

� This paper combines subspace learning with feature selection
with the goal of outputting a stable feature selection model and
also interpreted ability. To embed two different conceptual to-
pics (i.e., subspace learning and feature selection) into a unified
framework is very challenging in data mining and machine
learning. To address this, this paper embeds a subspace learning
based regularizer into a new devised feature selection model,
where the LPP enables the data distribution to be preserved
after removing the features. This naturally leads to the im-
provement of the stability of feature selection.

The rest of this paper is organized as follows: Section 2 sum-
marizes recent studies of feature selection methods and Section 3
gives the detail of the proposed algorithm and its corresponding
optimization algorithm. Section 4 presents our experimental re-
sults, followed by the conclusion of this paper in Section 5.

2. Related work

During the past decades, a large number of feature selection
methods have been proposed to overcome the high-dimensional
issue. Based on the availability of class labels, feature selection
methods can be parted into unsupervised method, supervised
method, and semi-supervised method.

In real application, it is usually expensive to obtain label in-
formation, so it makes unsupervised feature selection practical
[29,30,19]. For example, the maximum variance method selected
top ranked features with maximum variance [31]. However, the
selected features by the maximum variance method can not guar-
antee to be discriminate for classification [32]. Then, the Laplacian
score method was proposed to select features by preserving the
local manifold structure of the data set [32], while the Multi-cluster
feature selection (MCFS) first performed regression that using the
eigenvector of graph Laplacian and then selected features with
maximum spectral regression coefficients [33]. Recently, Bhadra
and Bandyopadhyay proposed an unsupervised feature selection
method by using an improved version of differential evolution [34].

Supervised methods usually select features according to the
availability of the class labels and evaluate by known class labels.
Interestingly, many supervised methods can be formulated into a
similar framework, where a regularization term is appended to the
loss function for feature selection [35]. For example, Wu et al.
proposed to conduct feature selection by a least square loss function
plus a group sparse regularizer [36], while Ma et al. proposed to

conduct feature selection by a mixture loss function and two sparse
regularizers [37]. Since there is a label information, supervised
feature selection methods are usually able to output discriminative
features. For example, Feng et al. [38] proposed a supervised feature
selection method to make use of label information for constructing
good discriminative framework of dictionary learning.

Semi-supervised methods are proposed to utilize both the limited
number of labeled samples and a large number of unlabeled samples
for training [39]. For example, Zhao et al. proposed to compute the
importance score of each feature on the graph Laplacians of both
labeled and unlabeled data for semi-supervised learning [40]. How-
ever, both of them were unable to select a large number of features
simultaneously and ignored the interdependencies between features.
To address these issues, Ma et al. proposed a semi-supervised fra-
mework for automatic image annotation [41]. Recently, Han et al.
proposed a semi-supervised feature selection method with spline
regression for video semantic recognition [42].

3. Method

In this section, we first give some notations used in this paper
and describe the detail of the proposed GSR_FS method, in Sec-
tions 3.1 and 3.2, respectively, and then explain the proposed
optimization method to the resulting objection in Section 3.3.

3.1. Notations

In this paper, matrices and vectors are written as boldface
uppercase letters and boldface lowercase letters, respectively. For a
matrix = [ ]xX ij , its i-th row and j-th column are denoted as xi and
xj, respectively. We also denote the Frobenius norm, ℓ2,1-norm of a

matrix X, respectively, as ∥ || = ∑ ∥ ∥ = ∑ ∥ ∥X x xF i i j j2
2

2
2 and

∥ || = ∑ ∥ ∥ = ∑ ∑ xX xi i i j ij2,1 2
2 . We further denote the transpose

operator, the trace operator, and the inverse of a matrix X as XT ,
( )tr X , and −X 1, respectively.

3.2. Graph self-representation sparse feature selection

Given a data matrix ∈ ×X n d, where n and d are the number of
samples and features, respectively, where ∈xj

n stands for a
feature vector. Given a response matrix = [ … ] ∈ ×Y y y y, , , c

n c
1 2 ,

we use the following formulation to construct a linear relationship
between X and Y:

λϕ( − ) + ( ) ( )l Y XZ Zmin 1Z

where ∈ ×Z d c denotes the feature weight matrix, ϕ ( )Z denotes
the regularization imposing on Z, ( − )l Y XZ denotes the loss term,
and λ denotes a positive constant. However, in real applications,
labels are usually difficult to be obtained due to all kinds of rea-
sons, such as budget limitation and unavailable labels, so the as-
sumption of unsupervised feature selection does not have label
information Y , which implies that Eq. (1) does not make sense.

In this paper, we assume that the features are dependent and
each feature can be represented by other features. Note that such
assumption can be found in machine learning and computer vi-
sion. Specifically, we define a linear regression model such that
each feature xi in X can be represented as a linear combination of
other features (including itself):

∑≈ = …
( )=

z i j dx x , , 1, , .
2

i
j

d

j ji
1

where the element zji of matrix Z (where ∈ ×Z d d) is a weight
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