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A B S T R A C T

Non-rigid video interpolation is a common computer vision task. In this paper we present an optical flow
approach which adopts a Laplacian Cotangent Mesh constraint to enhance the local smoothness. Similar to Li
et al., our approach adopts a mesh to the image with a resolution up to one vertex per pixel and uses angle
constraints to ensure sensible local deformations between image pairs. The Laplacian Mesh constraints are
expressed wholly inside the optical flow optimization, and can be applied in a straightforward manner to a wide
range of image tracking and registration problems. We evaluate our approach by testing on several benchmark
datasets, including the Middlebury and Garg et al. datasets. In addition, we show application of our method for
constructing 3D Morphable Facial Models from dynamic 3D data.

1. Introduction

Non-rigid video interpolation is a computer vision related problem
that requires the tracking of non-rigid objects, calculation of dense
image correspondences and the registration of image sequences con-
taining highly non-rigid deformation. Existing algorithms to achieve
this include model based tracking [1], dense patch identification and
matching [2,3], group-wise image registration [4], space–time tracking
[5–9] and optical flow [10–16]. All such models and the general dense
tracking have been widely used in fields e.g. motion tracking [17,18],
visualization [19,20], interaction [21] and Rotoscoping [22].

Optical flow is an attractive formulation as it provides a dense
displacement field between image pairs. In most standard approaches,
assumptions regarding gray value constancy between images and
smoothness in motion between neighboring pixels are adopted
[11,10]. Sun et al. [23] propose a different approach which overcomes
these constraints by learning a probabilistic model for flow estimation.
However, their approach requires training pre-calculated optical flow
ground truths, which are difficult to obtain. In the general optical flow
model, it is common to adopt a data term consisting of gray value and
gradient constraints (e.g. Brox and Malik [11]) and an additional
smoothness term. Nevertheless, most previous optical flow formula-
tions only consider global smoothness and ignore formulations that
preserve local image details.

Many optical flow techniques concentrate on problems where the
scene movement is largely rigid in nature. However, there are many
problem cases where we would like to calculate flow given highly non-
rigid global and local image displacements over long image sequences.

One recent problem highlighting this particular case is the alignment of
3D dynamic facial sequences containing highly non-rigid deformations
[24,25]. The problem requires non-rigidly aligning a set of images to a
reference – e.g. a neutral facial expression. Each image referred to as a
UV map1 is accompanied by a corresponding 3D mesh, and each mesh
has a difference vertex topology. Once the UV maps are registered to a
reference image (e.g. a neutral expression), vertex correspondence can
be imposed. The technique is popular in 3D Morphable Model
construction [24,26].

Beeler et al. [27] and Bradley et al. [25] adopt a slightly different
approach to mesh correspondence. In their solutions, image displace-
ment is calculated from camera views and then used to deform a
reference mesh from an initial frame through a 3D sequence. The
optical flow provides guides for adjusting pixel positions, and the mesh
reduces artifacts by imposing a constraint to prevent faces on the mesh
from becoming inverted or flipped. Further, mesh and image deforma-
tion research in graphics is an active area of research [28]. Such
techniques provide flexible methods to invoke deformation while
preserving some desired properties such as local geometric details.
As such, it is also of interests to apply such solutions as smoothness
constraints to optical flow calculation, which forms the central basis of
our presented work. Li et al. [29] introduce a hybrid optical flow
framework that takes into account a Laplacian mesh data term and a
global smoothness term. However, their energy is highly nonlinear and
hard to minimize.
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1 UV refers to the XY location of a pixel in the image. UV map is the graphical term for the texture for a 3D model. Each UV location maps to a 3D vertex on a corresponding mesh.
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1.1. Contributions

In this paper we present an optical flow algorithm (LCM-flow)
which adopts a smoothness term based on Laplacian Cotangent Mesh
Deformation. Such deformation approaches have been widely used in
graphics, particularly for preserving small details on deformable sur-
face [30,31]. Such concept shows advantage in the non-rigid optical
flow estimation [29]. Those energy is able to penalize local movements
and preserve smooth global details. In our method, the proposed
constraint on the local deformations is expressed in Laplacian coordi-
nates encourage local regularity of the mesh whilst allowing globally
non-rigid preservation.

Similar to Li et al. [29], our proposed algorithm applies a mesh to
the image with a resolution up to one vertex per pixel. The Laplacian
constraint is described in terms of a smoothness term, and can be
applied in a straightforward manner to a number of optical flow
approaches with the addition of our proposed minimization strategy.
We evaluate our approach on the popular Middlebury dataset [32] as
well as the publicly available non-rigid dataset proposed by Garg et al.
[12]. We show our method to give high performance on Middlebury in
terms of interpolation, and either outperform or show comparable
accuracy against the leading publicly available non-rigid approaches
when evaluated against Garg et al. In addition, we show an application
of our optical flow approach for building dynamic 3D Morphable
Models from dynamic 3D facial data, and outperform a current state of
the art method.

The remainder of our paper is organized as follows: In Sections 2
and 3 our strategy for calculating optical flow displacements between
image pairs is outlined. Section 4 shows an evaluation of LCM-flow on
the Middlebury dataset and four other publicly available sequences of
non-rigidly deforming objects [12].

2. Energy function definition

In this section the core energy function of our Laplacian Cotangent
Mesh based Optical Flow approach is presented. In the formulation the
algorithm considers a pair of consecutive frames in an image sequence.
The current frame is denoted by I X( )i and its successor by I X( )i+1 ,
where x yX = ( , )T is a pixel location in the image domain Ω. We define
the optical flow displacement between I X( )i and I X( )i+1 as w u v= ( , )i

T .
In the proposed optical flow estimation approach, the core energy
function can be obtained from the following general formulation:

λ ξE w E w E w E w( ) = ( ) + · ( ) + · ( )Data Global Lap

where E w( )Data denotes a data term that contains both Gray Value and
Gradient Constancy assumptions (Section 2.1) on pixel values between
I X( )i and I X( )i+1 .

Two smoothness terms are also introduced into the formulation.
Similar to [11,10], the first term E w( )Global controls global flow
smoothness. The second term represents our core contribution, i.e. a
Laplacian Cotangent Mesh constraint E w( )Lap . In the following sections

we next describe each term in detail, focusing on our Laplacian
constraint in Section 2.3.

2.1. Data term definition

Following the standard optical flow assumption regarding Gray
Value Constancy, we assume that the gray value of a pixel is not varied
by its displacement through the entire image sequence. In addition, we
also make a Gradient Constancy assumption which is engaged to
provide additional stability in case the first assumption (Gray Value
Constancy) is violated by changes in illumination. The data term of
LCM-flow encoding these assumptions is therefore formulated as:

∑ Ψ I I θ Ψ I IE w X w X X w X( ) = ( ( + ) − ( )) + · (∇ ( + ) − ∇ ( ))Data
Ω

i i i i+1
2

+1
2

In order to deal with occlusions, we apply the increasing concave
function Ψ s s( ) = + ϵ2 2 2 with ϵ = 0.001 [11] to solve this formation
which enables L1 minimization. The remaining term ∇ = (∂ , ∂ )xx yy

T is a
spatial gradient and θ ∈ [0, 1] denotes weight that can be manually
assigned with different values. In the experiments it is pre-defined as
0.5.

2.2. Global smoothness constraint

The first smoothness term of LCM-flow is a dense pixel based
regularizer that penalizes global variation. The objective is to produce a
globally smooth optical flow field (as in the data term, the robust
function Ψ s( )2 is again used):

∑ ΨE w u v( ) = ( ∇ + ∇ )Global
Ω

2 2

2.3. Laplacian Cotangent Mesh Smoothness Constraint

Global smoothness terms are widely used in optical flow formula-
tion [32]. However, their definition means that local nonlinear varia-
tions between images – such as those in non-rigid motion – can be over
smoothed. In order to improve optical flow estimation against the local
complexity of non-rigid motion, a novel Laplacian Cotangent Mesh
constraint is proposed in this section. The aim of this constraint is to
account for non-rigid motion in scene deformation. This term is
inspired by Laplacian mesh deformation research in graphics which
aims to preserve local mesh smoothness under non-linear transforma-
tion [30]. Its use in computer vision research for optical flow estima-
tion is introduced for the first time here. Although non-rigid motion is
highly nonlinear, the movement of pixels in such deformations still
often exhibit strong correlations in local regions. In order to represent
this, we propose a quantitative Cotangent Weight based on a Laplacian
framework and a differential representation. The scheme was originally
presented by Meyer et al. [31] for mesh deformation.

We assume that the image is initially covered by a triangular mesh

Fig. 1. Laplacian cotangent mesh constraint in optical flow vector space. (a) A mesh on a specific frame. (b) 1-Ring neighborhood based on vertices. (c) 1-Ring neighborhood based on
endpoints of optical flow vectors. (d) δ w( )i (the blue vector) calculated by endpoints of optical flow vectors. (e) The modified optical flow vector ′w i based on wi and δ w( )i . (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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