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of the proposed method.

As a similarity measure, correntropy has been increasingly employed in machine learning research. While
numerous experimental results have shown the effectiveness of correntropy based methods, the theoretical
analysis in this area is still poorly understood. In this paper, we propose a novel semi-supervised algorithm
under the maximum correntropy criterion, and present an elaborate error analysis for it. An excess general-
ization error bound is established, which demonstrates that the proposed method is consistent, and converges at
a faster rate compared with the related studies. Moreover, experiments are implemented to show the efficiency

1. Introduction

Semi-supervised learning (SSL), as a powerful tool to learn from a
limited number of labeled data and a large number of unlabeled data,
has attracted more and more attention in the machine learning
research [1-4]. In this paper, we consider the semi-supervised regres-
sion (SSR) problem [5-8]. Let X C R’ be a compact metric space and
Y = [-M, M] with a positive constant M. Assume that p is an under-
lying probability measure on Z:=X x Y. And the data set consists of [
labeled samples z:={(x;, y) }\—; drawn independently from p, together
with a typically much larger collection of u unlabeled data x:={x; }II-J;L;Jrl
generated according to the marginal distribution py of p.

Suppose the data generation model is given by

Y=f,(X)+E. (e8]

In Eq. (1), X € X is the explanatory variable, E is a noise process, and
Y € Y stands for the response variable which is the label of X. The
regression function f,X)is defined as -/x Ydp (Y'X), where p(-1X) is the
conditional distribution of p. The aim of the SSR is to predict f, (X)
from the labeled and unlabeled data generalized by (1).

Usually the prediction accuracy is measured by the mean square
error (MSE). For two variables X and Y, MSE is defined as
Exy[(X — Y)?], where Eyy is the expected value over the joint space.
Under MSE, the best estimator for f, (X) is found by minimizing the
loss quantities (f (X) — Y)? over the training samples for any measur-
able function f: X — R. The drawback is that the quadratic greatly

increases for values away from the f(X) = Y line [9,10], which leads to
amplify the contribution of samples that are far away from the mean
value of the noise distribution. Since the heavy-tailed distributions
usually have a few very large values compared to the other values of the
data set, the learning solution for regression will be slanted by these
samples. Therefore, MSE is optimal for Gaussian distributed residuals
while it does not work well for noise distributions that have outliers or
with peaks in the tails.

As a generalized similarity measure, correntropy has attracted
increasing attention in machine learning fields [11-13]. Correntropy
between two random variables X and Y involves all the even moments
of (X — Y) (see Section 2.1 for details), while MSE only concerns the
second order statistics which depends heavily on the assumption of
Gaussianity.

In this paper, a novel SSR algorithm is introduced, which contains a
loss function and a manifold regularizer based on correntropy. The
theoretical understanding is investigated for the proposed approach.
Our main contribution is that we establish an excess generalization
error bound, which shows that the proposed formulation is consistent
and has a fast convergence rate with O (/°~') decay. Here [ is the labeled
data number and e is a small parameter tending to zero. For two
sequences (e,), and (h,),, v = 1, 2, ..., we write ¢, = O (h,) if there exists
a constant D > 0 such that e, < Dh,,.

Compared with the existing outcomes of SSL, the rate in our paper
is more rapid than the sparse semi-supervised method in [14] with the
order of 0(1’%), and rate (3.14) in [15]. For supervised methods which
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learn from the labeled data, our convergence rate is also faster than the
supervised algorithm under the maximum correntropy criterion (MCC)
with the order of 0(1‘%) in [16], and the supervised method with the
minimum error entropy (MEE) criterion, e.g., 0(1‘%) in [17]. In
particular, our analysis does not require the interior cone condition
used in [15].

The remainder of the paper is organized as follows. In Section 2, we
introduce the novel SSR method with MCC. The excess generalization
error bounds are provided in Section 3, along with the discussions and
comparisons with related studies. Section 4 is dedicated to investigat-
ing the proposed algorithm in terms of the #2-empirical covering
numbers, and giving proofs of theoretical results stated in Section 3.
The experiments are implemented in Section 5. We conclude the paper
in Section 6.

2. The new SSR algorithm under MCC

Firstly, we revisit the definition and some properties of correntropy
[18].

2.1. Correntropy

Definition 2.1. Correntropy is a generalized similarity measure
between two arbitrary scalar random variables X and Y defined by

VX, Y) =Exy[KX, )]
where the expected value is over the joint space and K (-,-) is any

continuous positive definite kernel.
We study the special case V,(X,Y)=Eyy[K,(X,Y)], where

_yp .
K, (X, Y) is a Gaussian kernel given by K, (X, Y) = exp{—% with

a bandwidth parameter o> 0. From the definition we know that
correntropy is symmetric, positive, bounded, and it reaches its max-
imum if and only if X=Y. The following result could be directly derived
from Property 3 in [10].

Property 2.2. Correntropy V,(X, Y) involves all the even moments of
the random variable (X — Y): V,(X, ¥) = ¥ Vg, [ &0 |

n=0 ! o

It concludes that V,(X, Y) consists of higher moments of (X — ¥)
while MSE(X, Y) only concerns the second order statistics which
depends heavily on the assumption of Gaussianity. We use Fig. 1 to
show that correntropy is a local similarity measure whereas MSE is
global. By global, it means all the examples in the joint space will
contribute appreciably to the value of the similarity measure while the
locality means the value is primarily dictated along the X=Y line. So
compared with MSE, correntropy has a strong outlier rejection ability.

z=(x-y)?
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2.2. The new semi-supervised algorithm under MCC

In this part, we propose the SSR method under MCC. Recall that in
semi-supervised setting, ! labeled data {(x; y)}_, together with u
unlabeled data {xj}_’f;‘; .1 are available. To learn from samples we

frequently employ the Tikhonov regularization scheme [7]

min{&,(f) + 4L2()},
feH

where &,(f) = %Zi:l £(y, f (x;)) is the empirical risk with : R? — R, a
loss function. A; is a nonnegative regularization parameter, 2 is a
penalty functional, and H is the hypothesis space containing any
function defined as f: X — R.
The proposed semi-supervised method is formulated as
)= in {&F Wlflk + I
S argfreq;{r;({ 2(N) + allfllx + L5700} ©
where A; and A, are nonnegative regularization parameters. A is
denoted as A:=4, 4. The first term in the right side of Eq. (2) is given by

1
EL() = T X Aol S (60

i=1

3)

_o—fwy?
Here Z,(y, f(x)) = 6*|1 — ¢ o2

is the correntropy induced regres-

sion loss function [16], which is based on correntropy for Gaussian
kernel. As a similarity measure, correntropy describes prediction errors
of f over the labeled data. To minimize these loss quantities, we come to
a maximum problem of correntropy, which consequently is referred to
as MCC.

In Eq. (2), |||l is the norm restricted in the space Hy, which is the
reproducing kernel Hilbert space (RKHS) associated with a Mercer
kernel K [7]. Recall that a Mercer Kernel is defined as K: X x X — R,
which is continuous, symmetric, and positive semi-definite. Hy is
defined to be the closure of the linear span of the set of functions
{K+=K (x, -): x € X} with the inner product (,-),, = ()¢, satisfying
(Ky, Ky)g = K(x, y). For each fe Hg, the reproducing property takes
the form of f(x) = {f, K )k-

The last term in the right side of (2) is the correntropy induced
manifold regularizer

I4u

2 Lo(f ) f @)W

ij=1

1

Iz(f)zm

C))

where W;:=W (x;, x;) is the weight given by a function W (x, x"), satisfying
0 < W(x, x') < w with a constant w > 0 for any x, x' € X. For example,

the Gaussian kernel K, (X, Y) = exp{—w} with a bandwidth para-

(x-y)°

z=e"

Fig. 1. The MSE and correntropy for the Gaussian kernel with ¢ = 1 in the joint space.
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