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A B S T R A C T

Tensor analysis has reached a celebrity status in the areas of machine learning, computer vision, and artificial
intelligence. Completing and recovering tensor is an important problem for tensor analysis. It involves
recovering a tensor from either a subset of its entries or the whole entries contaminated by noise. Classical
tensor completion/recovery methods are based mainly on l2-norm (Gaussian distribution noise) models, and
are sensitive to noise of large magnitude. While l1-norm (Laplacian distribution noise) based methods are
robust to noise of large magnitude, they do not deal with dense noise effectively. In this paper, we present a
novel Cauchy tensor decomposition method for simultaneously recovering and completing a low rank tensor
with both missing data and complex noise. We utilize the Cauchy distribution to model noise and derive the
objective function of Cauchy tensor decomposition under the maximum likelihood estimation (MLE) frame-
work. Then we developed a robust tensor decomposition framework that used first-order optimization
approaches to optimize the objective function. Extensive numerical experiments are conducted and show that
our method is able to successfully recover and complete tensors with large/dense noise and missing data. We
further demonstrate the usefulness of Cauchy tensor decomposition on three real-world applications, image
inpainting, traffic data process and foreground/background separation. The experimental results show that the
method is applicable to a wide range of problems.

1. Introduction

Tensors, which are the higher-order generalization of vectors and
matrices, provide a useful representation of the existing real world data
that has the natural multi-dimensional structure [1,2]. For instance, a
video with multi-channels can be represented by a higher order tensor
of dimensionality time pixels pixels channel× × × ; the traffic data can be
grouped into a tensor of the form interval location day week× × × .
Tensor decomposition enables us to analyze the multi-mode structure
by capturing the underlying low-dimensional structure of the tensor
data. Tensor decomposition has been an active area during past
decades (e g., [3]), and has been applied in various fields including
face recognition [4–6], image compression [7], foreground segmenta-
tion [8], and missing traffic data imputation [9]. Among typical
decomposition methods are CANDECOMP/PARAFAC (CP) decompo-
sition and Tucker decomposition.

Many high-dimensional systems are suffering from missing data
and/or irregular noise. Therefore a key problem in tensor analysis tasks
is to find a suitable decomposition of the observed tensor when missing

data and noise [10] exist, and hence tensor completion/recovery
became a hot topic.

The problem of missing data comes up in many scientific areas, a
great deal of effort has been made to develop tensor completion
algorithms. Tensor completion methods can be roughly grouped into
two classes: decomposition based methods and completion based
methods. The decomposition based methods approximate a tensor
with an estimated low rank or low-n-rank tensor when only part entries
of a tensor are observed. In [11], the CP decomposition with missing
data is formulated as a weighted least square problem and is applied to
missing EEG (Electroencephalography) data imputation and network
traffic data modeling. In light of [11], Tan et al. [9,12] developed
Tucker decomposition based methods to impute missing traffic data.
And a multi-tensor completion method based on Tucker decomposition
has been proposed in [13]. In order to analyze tensors with missing
data under statistical models, several Bayesian scheme based decom-
position methods are also investigated and developed [14,15].
Decomposition methods successfully complete incomplete tensors
contaminated by small and sparse noise, but may produce unreliable
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results in the presence of large and dense irregular noise. In another
line of research, the completion scheme utilizes the tensor trace norm –

the convex relaxation of a tensor's rank. Liu et al. [16] firstly defined
the tensor trace norm as the weighted sum of traces norms of mode
matrices. They converted tensor completion problem into a convex
optimization problem and applied it to visual data inpainting. Followed
in their works, a series of modified and similar methods have been
proposed [17–20]. In a nutshell, completion based methods, which are
an extended form of matrix completion [21], provide a reliable
estimation of missing data with a convex optimization framework.
However, completion-based methods cannot explicitly capture the
underlying structure and factors of tensors, and the nuisance para-
meters of each mode are difficult to determine. This paper aims to
develop a method that can not only recover multi-dimension data from
missing data and complex irregular noise, but capture the underlying
structure of tensor. So decomposition scheme is selected instead of
completion scheme in this paper.

A number of works have been put forward to tensor recovery under
irregular noise. The challenge of recovering a corrupted tensor lies in
the understanding and modeling of irregular noise. From a statistical
viewpoint, the convention methods including some tensor completion
approaches that utilizing tensor l2-norm can be roughly viewed as a
maximum-likelihood estimation problem under the Gauss noise dis-
tribution. The conventional l2-norm-based tensor decomposition meth-
ods are sensitive to gross outliers, because the Gauss distribution can
sometimes amplify the negative effects of irregular noise with large
magnitude. As an alternative, tensor recovery based on l1-norm has
been proposed [22–24]. The minimization problem utilizing the l1-
norm can be regarded as a maximum-likelihood estimation one under
the Laplacian noise distribution, which is robust to gross outliers [25].
Li et al. [22] separated the observed tensor into a low dimensional
structure with low-rank constraint and an additive (sparse) irregular
pattern with a small l0-norm value. Because the l0-norm minimization
problem is very difficult to solve [26], the objective function is then
relaxed as a l1-norm minimization problem. The Augmented Lagrange
Multiplier optimization method for tensor recovery used l1-norm is
studied in [23]. Goldfarb and Qin [24] proposed a modified model and
addressed the problem by nonconvex optimization. The experimental
results show that the l1-norm based methods can automatically exploit
the low-rank structure of the tensor data from sparse noise.

In many real data corruption applications, there exist both mixing
noise patterns [27] and missing data. In particular, some noise patterns
are dense and of large magnitude. In general, l2-norm (Gauss
distribution) based approaches are only suitable for small noise, while
l1-norm (Laplacian distribution) based approaches are only suitable for
sparse noise. The drawbacks of l1 norm and l2 norm based tensor
recovery methods have caught many researches' attentions, and
numerous methods to handle the complex noise have been proposed
[28–30]. However, these approaches cannot deal effectively with
missing data completion problems.

In addition to Gauss distribution and Laplacian distribution,
Cauchy distribution based filter can handle impulsively sparse noise
more accurately than Gaussian and Laplace models for signal filter
[31,32]. It can also easily control both the sparse large noise and the
dense small noise [33]. Because of the strong ability to deal with noise
with mixing pattern, the Cauchy distribution has been applied to one-
way Compress Sensing [34] and two-way principal component analysis
(PCA) [35]. In [34], the authors present Cauchy-derived reconstruction
algorithms addressing the reconstruction for signals in heavy-tailed
impulsive environments. The experimental results show that the
Cauchy representation of noise offers a robust framework for CS. Xie
and Xing [35] propose a Cauchy principle component analysis. They
utilize Cauchy distribution to model dense and large noise, and derive
Cauchy PCA under the maximum likelihood estimation (MLE) frame-
work with low rank constraint. Except one-way and two-way data, the
Cauchy distribution is applied to only a few multi-way tensor cases.

In this article, we propose novel robust CP and Tucker decomposi-
tion algorithms that can impute the missing data and recover the
tensor from mixing irregular pattern via Cauchy representation of
noise. Firstly, we use Cauchy distribution to model noise and formulate
the optimization problem under a maximum likelihood estimation
framework with tensor decomposition. Then, the problem is optimized
by nonlinear conjugate gradient and limited memory BFGS methods.
The contributions of this paper are in two aspects, that is, Cauchy
distribution, which can efficiently handle mixed noise pattern, was
introduced to tensorial data analysis, and a novel framework for tensor
completion and recovery that can simultaneously address missing data
and noise was proposed.

The rest of this paper is organized as follows. Section 2 presents
preliminaries. In Section 3, we discuss the detailed process of proposed
method. Section 4 reports experimental results of our method on
simulated data and several applications. Finally, Section 5 provides
some concluding remarks.

2. Preliminaries

2.1. Tensor basics

Multiway arrays, also referred to as tensors, are higher-order
generalizations of vectors and matrices. A brief overview of tensor
decomposition and its application can be found in [3]. Higher-order
arrays are represented as R∈ I I I× ×… N1 2 , where the order of is N .
Each dimension of a multiway array is called a mode. The mode-n
unfolding (also called matricization or flattening) of a tensor

R∈ I I I× × N1 2 is defined as n Xunfolding( , ) = n( ), where the tensor
element i i i( , ,…, )n1 2 is mapped to the matrix element i j( , )n , where
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dimensional tensor R∈ I I I× ×… N1 2 , denoted by R n( ), is the rank of the
mode-n unfolding matrix X n( ).

The inner product of two same-size tensors R, ∈ I I I× ×… N1 2 is
defined as the sum of the products of their entries, i.e.,
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The corresponding Frobenius norm is XX∥ ∥ = ( , )F . For any
n N1 ≤ ≤ , the n-mode (matrix) product of a tensor R∈ I I I× ×… N1 2 with

a matrix M R∈ J I× n is denoted by M×n . In terms of flattened matrix,
the n-mode product can be expressed as

M Y MA= × ⟺ = .n n n( ) ( ) (3)

Let be the I I I× × … N1 2 observed tensor that stores all the
observed values, such that

⎧⎨⎩
a i i i= if ( … … ) ∈
0 otherwise

i i i k n… … 1k n1

(4)

The CP decomposition decomposes a tensor into a sum of compo-
nent rank-one tensors. The CP decomposition of N-dimensional tensor

R∈ I I I× ×… N1 2 can be concisely expressed as

∑ a a a A A A= ◦ ⋯◦ = [ , ,…, ],
r
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where R is the rank of tensor. ○ denotes the vector outer product.
A a a a= [ , ,…, ]i i i i

R
( ) ( )

1
( )
2

( ) denotes the factor matrix of the i-th mode. Fig. 1
gives a CP decomposition of 3-way tensor.

The Tucker decomposition naturally generalizes the orthonormal
subspaces corresponding to the left/right singular matrix computed by
the matrix SVD [36]. The n-dimensional tensor R∈ I I I× ×… N1 2 can be
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