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a  b  s  t  r  a  c  t

Cooperative  optimization  algorithms  have  been  applied  with  success  to solve  many  optimization  prob-
lems. However,  many  of  them  often  lose  their  effectiveness  and  advantages  when  solving  large  scale  and
complex  problems,  e.g.,  those  with  interacted  variables.  A  key  issue  involved  in  cooperative  optimiza-
tion  is  the  task  of  problem  decomposition.  In this  paper,  a fast  search  operator  is  proposed  to  capture  the
interdependencies  among  variables.  Problem  decomposition  is  performed  based  on  the  obtained  interde-
pendencies.  Another  key  issue  involved  is  the  optimization  of  the  subproblems.  A cross-cluster  mutation
strategy  is proposed  to further  enhance  exploitation  and  exploration.  More  specifically,  each  operator  is
identified  as  exploitation-biased  or exploration-biased.  The  population  is divided  into  several  clusters.
For  the  individuals  within  each  cluster,  the exploitation-biased  operators  are  applied.  For  the  individuals
among  different  clusters,  the exploration-biased  operators  are  applied.  The  proposed  operators  are  incor-
porated into  the  original  differential  evolution  algorithm.  The  experiments  were  carried  out  on CEC2008,
CEC2010,  and  CEC2013  benchmarks.  For  comparison,  six  algorithms  that  yield  top  ranked  results  in CEC
competition  are  selected.  The  comparison  results  demonstrated  that  the proposed  algorithm  is  robust
and  comprehensive  for large scale  optimization  problems.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Optimization problems are rife in diverse fields such as mechan-
ical engineering, compressed sensing, natural language processing,
structure control, and bio-computing [1–5]. Researchers have to
determine a set of model parameters or state-variables that provide
the minimum or maximum value of a predefined cost or objective
[6]. With the coming of internet of things (IoT) [7], many opti-
mization problems are becoming more difficult, i.e., the problems
are characterized by more variables with complicated interactions.
Research on optimization problems has attracted the attention of
researchers and many algorithms have been proposed. Though the
existing optimizers have shown to be successful in solving mod-
erate scale problems, many of them still suffer from the “curse of
dimensionality”, which means that their performance will deteri-
orate as the dimensionality of the problem increases [8,9]. Thus
effective and efficient algorithms for large scale optimization have
become essential requirements. In this paper, we aim at solving the
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large scale optimization problems and providing tools for scientists
and engineers when they are solving real world problems from the
involved disciplines.

Generally, the natural way to address the “curse of dimension-
ality” is to apply cooperative optimization, which can be regarded
as an automatic approach to implement the divide-and-conquer
strategy. A typical cooperative optimization algorithm can be sum-
marized as follows [10]:

1. Problem decomposition: decompose a large scale problem into
smaller scale subproblems.

2. Subproblem optimization: optimize each subproblem by means
of a separate optimizer.

3. Cooperative coordination: combine the subsolutions to obtain
an entire solution.

A key issue with regards to the cooperative optimization is
the task of problem decomposition. An appropriate decomposition
algorithm should group interacted variables together so that the
interdependencies among different subproblems are minimized.
Based on whether the variable interdependencies are considered
or not, the decomposition algorithms can be classified into two
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categories. Generally, the algorithms performed without consid-
ering variable interdependencies are simple and effective for
separable problems, but have difficulty in solving nonseparable
problems [10–16]. On the other hand, the algorithms performed
by considering the variable interdependencies provide opportuni-
ties to solve large scale nonseparable problems [17–24]. However,
many of them either add extra computational burden to the algo-
rithm or lack extensive variable interdependence learning.

Another key issue with regards to the cooperative optimization
is the optimization of the subproblems. The widely used opti-
mizers are inspired by nature phenomena, which include genetic
algorithm (GA) [25], evolution programming (EP) [26,27], evolu-
tion strategy (ES) [28,29], differential evolution (DE) [6,30], ant
colony optimization (ACO) [31], particle swarm optimization (PSO)
[32–37], bacterial foraging optimization (BFO) [38], simulated
annealing (SA) [39], tabu search (TS) [40], harmony search (HS)
[35,36,40], etc. These optimizers facilitated research into the opti-
mization of the subproblems. However, many of them are still not
free from premature convergence for the complex multi-modal,
rugged, and nonseparable problems.

As can be seen from the aforementioned, as far as cooperative
optimization algorithms concerned, there still exists a big room to
improve their performance through deeper studies. In this paper,
we propose a variant of cooperative optimization algorithm. The
study concentrates on the aforementioned two  issues. To solve
the task of problem decomposition, we propose a fast variable
interdependence searching operator, which operates by recur-
sively partitioning decision variables into blocks and identifying
the interdependences among different blocks. Then we decompose
a large scale problem into small scale subproblems based on the
obtained interdependencies. To solve the task of subproblem opti-
mization, we propose a cross-cluster mutation strategy, in which
each operator is identified as exploration-biased or exploitation-
biased. The population is divided into several clusters. For the
individuals among different clusters, the exploration-biased oper-
ators are applied, and for the individuals within each cluster, the
exploitation-biased operators are applied. By favoring search in the
vicinity of each cluster and in the regions among different clus-
ters, this strategy promotes efficient exploration as well as efficient
exploitation. We  further incorporate the proposed strategies into
the original differential algorithm to perform optimization. The rea-
son that we adopt differential evolution as base optimizer is that it
has been frequently adopted and the resulting variants have been
achieving top ranks in various competitions [30].

The reminder of this paper is organized as follows. Section 2
reviews the related works with regard to cooperative optimization
and differential evolution. Section 3 gives the description of the
proposed algorithm, which includes the fast variable interdepen-
dence learning method, and the cross-cluster mutation strategy.
Section 4 presents the experimental results, followed by conclud-
ing remarks in Section 5.

2. Related works

This work is closely related to cooperative optimization and dif-
ferential evolution. In this section, we firstly review the prevailing
algorithms for cooperative optimization. And then review the state
of the art algorithms for differential evolution.

2.1. Cooperative optimization

The cooperative optimization algorithm addresses the “curse of
dimensionality” by applying the divide-and-conquer strategy. One
of the most important issue with regards to divide-and-conquer
is the task of problem decomposition, the process of partitioning

a large scale problem into subproblems. The decomposition deci-
sion regarding variable interdependencies plays a significant role
in the algorithm’s performance. Based on whether the variable
interdependencies are considered during the execution process,
the existing algorithms can be classified into two categories. The
algorithms belonging to the first category are performed with-
out considering the variable interdependencies. For example, the
algorithms reported in [10–15] operate by decomposing problems
arbitrarily, with each subproblem being optimized by a separate
optimizer. When a subproblem is being optimized, the variables
belonging to other subproblems are kept unchanged. The solution
to the problem is obtained by combining the subsolutions found
by each of the separate optimizer. During the optimization pro-
cess, the decomposition strategy is kept unchanged. The advanced
algorithms belonging to this category operates by decomposing
problem dynamically [8,16]. During the optimization process,
the algorithms decompose problem based on a measured stag-
nation, and eliminate previous decomposition strategies which
are no longer making contributions. In this way, the algorithm
has the opportunity to optimize interacting variables. Generally,
algorithms that do not consider variable interdependencies are
effective for separable problems, but have difficulty solving non-
separable problems, especially the problems with tightly interacted
variables.

The algorithms belonging to the second category are per-
formed by considering the variable interdependencies implicitly
or explicitly. For example, the algorithms reported in [17–19]
use a random grouping scheme to decompose a large scale prob-
lem into subproblems, and then optimize each of the subproblem
by a separate optimizer. For co-adaptation, the algorithms apply
weights to the subproblems, and optimize the weight vectors
with a certain optimizer. In [20–22], the variable interdependen-
cies are captured during the optimization process. Initially, the
system does not have any knowledge with regards to the vari-
able interdependencies. With the optimization process going on,
the system captures the variable interdependencies by investi-
gating the relationship between the objective functions and the
candidate solutions. While optimizing, the decomposition and the
optimization strategies are adapted according to the obtained
interdependencies. In our previous work [24], we propose a sta-
tistical model to explore the interdependencies among variables.
At this point, the degree of interdependence between each pair of
variables is quantified. With these interdependencies, the problem
is decomposed and optimized using a cooperative particle swarm
optimization (CPSO) framework. Generally, the algorithms that
consider variable interdependencies provide opportunities to solve
nonseparable problems. However, many of them require extensive
computational burden to capture the variable interdependencies.
For example, in our previous work [24], the computational efforts
incurred by the variable interdependence learning take about 30%
of the total computational efforts.

A critical issue in the application of cooperative optimization is
to determine the learning strategy allowing efficient exploration
of the interdependencies among variables, as well as avoiding
intensive computational efforts consumption. Motivated by these
findings, we developed a fast variable interdependence search
operator to mitigate the problems encountered in the aforemen-
tioned algorithms. The proposed operator works as follows. The
subsets of variables are referred as variable blocks. The interdepen-
dencies among variable blocks are further defined. We  advocate
a fast search operator which operates by recursively partitioning
decision variables into blocks and then identify the interdependen-
cies among the blocks. By favoring search the interdependencies
among variable blocks recursively, this operator promotes efficient
exploration of the interdependencies, without substantially adding
computational burden.
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