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Multiple kernel k-means (MKKM) clustering algorithm is widely used in many machine learning and
computer vision tasks. This algorithm improves clustering performance by extending the traditional
kernel k-means (KKM) clustering algorithm to a multiple setting by combining a group of pre-specified
kernels. In this paper, we develop and propose a multiple kernel k-means clustering via latent variables
(MKKLV) algorithm, in which base kernels can be adaptively adjusted with respect to each sample. To

improve the effectiveness of the kernel-specific and sample-specific characteristics of the data, joint
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diversity regularization and graph regularization are utilized in the MKKLV algorithm. An efficient three-
step iterative algorithm is employed to jointly optimize the kernel-specific and sample-specific coeffi-
cients. Experiments validate that our algorithm outperforms state-of-the-art techniques on several dif-
ferent benchmark datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many machine learning [1], computer vision [2,3], and data
mining [4,5] fields, clustering algorithms are used to find mean-
ingful groupings of samples in an unsupervised manner. One ex-
ample of traditional clustering algorithms is k-means clustering
[6-9], which uses the k prototype to characterize the data and
minimizes the sum-of-squares cost function. However, the stan-
dard k-means algorithm is limited to the sum-of-squares cost
function, and it cannot identify arbitrarily shaped clusters. An
advantage of kernel-based clustering methods, such as kernel
k-means clustering [10,11], is its capability to handle non-linear
separable clusters, typically with good clustering performance. In a
practical scenario, different kernels can be constructed because
samples have multiple representations that originate from differ-
ent data sources (i.e. different kernel functions can lead to differ-
ent kernels; different kernels can also be constructed through
multiple feature representations). Multiple kernel k-means clus-
tering is superior over other approaches because it utilizes all of
the available information for performing kernel k-means, which is
better than using a single fixed kernel.

Multiple kernel k-means clustering has been attracting in-
creasing attention in recent years, and many efforts have been
made to improve clustering performance [12-16]. [12] proposes a
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multiple view clustering algorithm that incorporates multiple
kernels and automatically adjusts kernel weights. In [13], they
assign kernel weights to the corresponding view's information
and utilize a parameter to control the sparsity of these weights.
[14] combines the kernels calculated on the views in a localized
manner to better capture the sample-specific characteristics of
the data. In [15], they propose a localized multiple kernel clus-
tering method, which is dedicated to the dataset with varying
local distributions. [16] presents a robust multiple kernel
k-means algorithm by replacing the sum-of-squared loss with a
t,,1— norm.

Existing state-of-the-art multiple kernel k-means clustering
methods are hindered by several defects. First, [12,13,16] learn the
kernel combination weights on the basis of a given dataset and use
the same kernel weights for all samples, however, such an ap-
proach may not be ideal because of sample-specific characteristics
of the data. [14] learns the sample-specific combination weights
directly instead of the kernel combination weights, however, this
method cannot capture kernel-specific information. An ideal
multiple kernel k-means clustering algorithm should consider
both the kernel-specific and sample-specific information, which
leads to a fairer learning model between the kernel-specific and
sample-specific properties. This mechanism is lacking in existing
multiple kernel k-means clustering methods.

Second, the data fitting term is very important for multiple
kernel k-means clustering because the coefficients are learned
from minimizing the regularized fitting error. Good fitting terms in
multiple kernel k-means clustering should satisfy two properties:
(1) enable the fitting model to capture more information among
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different kernels and different samples; (2) prevent the learning
model from becoming over-flexible. However, in [14], the opti-
mization problem contains many real-valued variables (number of
kernels x number of samples), yet the optimization problem has
no proper regularization term. Such behavior will result in an
over-flexible learning model.

Basing on the observations and findings above, we propose a
novel multiple kernel k-means clustering method, i.e. the multiple
kernel k-means clustering via latent variables (MKKLV), where
base kernels can be adaptively adjusted with respect to each
sample. To the best of our knowledge, this study is the first to
combine the kernel-specific and sample-specific information into
a joint formulation, which considers both the kernel-specific and
sample-specific information in improving clustering performance.
To fully utilize the kernel information, we adopt a diversity reg-
ularization, which has been proven effective in [17], to capture the
complementary information among different kernels. In addition,
to avoid the over-flexible problem induced by latent variables, we
adopt a graph regularization. As will be demonstrated in sub-
sequent sections, integrating the diversity regularization and
graph regularization terms into our MKKLV formulation allows the
latent variables to be optimized and the kernel combination
weights to be well separated. In this way, the proposed algorithm
retains the advantages of existing efficient optimization
algorithms.

In summary, we highlight the main contributions of this paper
as follows:

® We propose a MKKLV algorithm by exploring the multiple
kernel k-means with latent variables, in which base kernels can
be adaptively adjusted with respect to each sample.

® To improve the effectiveness of the kernel-specific and sample-
specific characteristics of the data, we further use a joint di-
versity regularization and graph regularization for the MKKLV
algorithm.

® We derive and present an efficient three-step iterative algo-
rithm to optimize the kernel-specific and sample-specific
coefficients jointly.

® We conduct comprehensive experiments to compare the pro-
posed approach with existing state-of-the-art methods on six
benchmark datasets. The experimental results demonstrate the
superiority of the proposed method over the state-of-the-art
methods.

The remainder of this paper is organized as follows. Section 2
gives the notations and preliminaries used throughout the paper.
We introduce the kernel k-means and multiple kernel k-means in
Section 3. We then present the MKKLV algorithm in Section 4. An
efficient iterative algorithm is proposed in Section 5, where the
details of the algorithm are also provided. The convergence ana-
lysis and time complexity are presented in Section 6. We compare
the clustering performance of MKKLV and state-of-the-arts mul-
tiple kernel k-means clustering algorithms, and discuss the para-
meter sensitivity in Section 7. Finally, conclusions are drawn in the
Section 8.

2. Notations and preliminaries

Throughout the paper, matrices are written as boldface capital
letters and vectors are denoted as boldface lowercase letters. For
matrix M, tr(M) is the trace of M if M is square.

Assume that we have n data samples {x}, let
X = [¥, X, ..., X;]' denote the data matrix with each row being a
data feature vector, where x; € R? is the feature descriptor of the i-
th example.

In manifold learning, graph Laplacian is defined by L =D — W,
where Wj is the edge weight between x; and x; in the sparse
adjacency matrix on the neighborhood graph (e.g. one can use
Gaussian kernel or K-nearest neighbors) and D is a diagonal matrix
with its i-th diagonal entry being D;; = Zj W.

3. Multiple kernel k-means

In this section, we first present the kernel k-means, which
transforms the sum-of-squares minimization cost function of the
traditional k-means into a trace minimization problem. Then we
extend it to the multiple kernel k-means.

3.1. Kernel k-means

Suppose we are given a dataset X = [¥;, X, ..., Xz]' € R"™4, and
aim to partition these data point into k disjoint clusters. The ob-
jective of k-means can be written as follows

min )’ |[*i —[tzi”z st.zi=1,2, ...k
- (M

where we want to minimize over the following iterations

z; = arg max ||x; — puy, |2
i gk ||t ﬂkH @)

k ieck (3)

Now we assume that we have defined a feature mapping &(-)
that maps the data samples into a feature space. We introduce a
n x k assignment matrix, Z € {0, 1}"<k, each column of which re-
presents a data-case and contains exactly one 1 at row k if it is
assigned to cluster k. The objective of kernel k-means is to mini-
mize the sum-of-squares cost function over the cluster assignment
variables.

nk

min )

k
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where p,. = e Zfﬂziccb(x,-) is the centroid of cluster ¢ (1 <c <k)

and ne = Y, Zi.

Then we  define L =diag(ni', ny", .., ;") and
@ = [D(X) D(Xy) ... D(Xy)], and the optimization equation in kernel
k-means can be converted into an equivalent matrix-vector form
problem

min  tr(® — M)’ (® - M)) s.t.ZI, =1,, M = ®ZLZ".
ze{0,1y1xk 5)

Next we can find that Z'Z = L= and (ZLZ")? = ZLZ". Using this
we can obtain the following equation

tr(@ — M) (® — M)) = tr(K) — tr(L/2ZTKZL!/?) 6)

where ®'® = K. Therefore the optimization problem can be for-
mulated as follows
min  tr(K) — tr(12ZTKZI'?) st Z1, = 1,,.
Ze(0,1)1xk @)
It should be noted that this problem is very difficult to solve
due to the constraint is to search of discrete matrix Z. However,
this problem can be approximated through a relaxation on this
constraint. Recall that Z'Z = L1, thus (L'/2Z7ZL'/?) = I,. By renam-
ing H=ZI'2, we can formulate the following relaxation of the
problem
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