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a b s t r a c t

Point matching problem seeks the optimal correspondences between two sets of points via minimizing
the dissimilarities of the corresponded features. The features are widely represented by a graph model
consisting of nodes and edges, where each node represents one key point and each edge describes the
pair-wise relations between its end nodes. The edges are typically measured depending on the Euclidian
distances between their end nodes, which is, however, not suitable for objects with non-rigid de-
formations. In this paper, we notice that all the key points are spanning on a manifold which is the
surface of the target object. The distance measurement on a manifold, geodesic distance, is robust under
non-rigid deformations. Hence, we first estimate the manifold depending on the key points and concisely
represent the estimation by a graph model called the Geodesic Graph Model (GGM). Then, we calculate
the distance measurement on GGM, which is called the geodesic-like distance, to approximate the
geodesic distance. The geodesic-like distance can better tackle non-rigid deformations. To further im-
prove the robustness of the geodesic-like distance, a weight setting process and a discretization process
are proposed. The discretization process produces the geodesic-like features for the point matching
problem. We conduct multiple experiments over widely used datasets and demonstrate the effectiveness
of our method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is a standard method to represent an image by extracting a set
of key points from the image. Matching key points of two images is
an important and fundamental problem in the field of computer
vision. The application scope of matching key points broadly includes
object recognition, 3D reconstruction, motion detection and so on.

In order to improve the matching precision, the spacial rela-
tions among key points are exploited by representing each set of
key points with a graph model. Each node of the graph represents
a key point and each edge of the graph represents the spacial re-
lations between its two end nodes. Typically, the weights on edges
are assigned according to the Euclidian distances among points,
which is unsuitable for non-rigid deformations. For example, two
key points are far from each other in one image while their
counterparts can be deceptively close in the other image when the
target object deforms non-rigidly. The target object is the object
from whose surface the key points are extracted.

To tackle the point matching problem under non-rigid de-
formations, we notice that the surface of the target object is a

manifold. As a distance measurement on a manifold, the geodesic
distance is able to preserve the intrinsic geometry of the manifold
and be robust to non-rigid deformations as demonstrated in [30].
This measurement can be valuable to handle non-rigid deforma-
tions between sets of points in the point matching problem. To
apply the geodesic distance, the manifold, which is the surface of
the target object, should be estimated firstly.

In this paper, we propose to estimate the manifold depending
on the set of key points under the assumption that all the key
points are extracted from a unique and connected surface of the
target object. We use the “manifold” and the “surface” inter-
changeably. We evaluate the probabilities of points to be on the
manifold according to their distances to key points. Points with
high probabilities belong to the estimation of the manifold.

The resulted estimation of the manifold enable us to calculate
the geodesic distance between key points. However, for compu-
tational efficiency, we represent the estimation by a graph model
which is called the Geodesic Graph Model (GGM). In GGM, every
node represents one key point in the point set. The geodesic dis-
tance between key points on the estimation is approximated by
the geodesic-like distance defined on the GGM.

The geodesic-like distance is designed to imitate the geodesic
distance. We calculate geodesic-like distances as suggested in [30].
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For two neighboring key points, their geodesic-like distance is well
approximated by their Euclidean distance. For two faraway key
points, their geodesic-like distance is approximated by adding up a
sequence of short edges between neighboring key points. Similar
to the geodesic distance, the geodesic-like distance is robust to
non-rigid deformations of the manifold.

To further improve the robustness of the geodesic-like dis-
tances, we discretize their lengths. We represent the distribution
of lengths of the geodesic-like distances by histograms. Then the
sequence number of a histogram is a feature of all the lengths in
the histogram. This feature is called the geodesic-like feature. In
the meanwhile, we calculate the reliabilities of lengths of geo-
desic-like distances according to how well the geodesic-like dis-
tances approximate their corresponding geodesic distances. The
Geodesic-like features and the reliabilities are exploited to tackle
the point matching problem.

In order to evaluate our algorithm, we conduct several ex-
periments on various datasets. Experimental results show the ef-
fectiveness of the proposed algorithm.

In summary, the main contributions of this paper are three-
fold:

1) To the best of our knowledge, we are the first to estimate the
surface of the target object depending on the set of extracted
key points. Under the assumption that all the key points are on
the surface of the object, every point in the image is assigned a
probability to be on the surface of the target object according to
its distances to key points.

2) Based on our graph model GGM, we propose the geodesic-like
distance as a new distance measurement between key points.
Compared with conventional distance measurements, the geo-
desic-like distance is robust to non-rigid deformations of the
target object.

3) To increase the robustness of our algorithm, we further propose
to estimate the reliabilities of lengths of geodesic-like distances
and come up with the geodesic-like features by exploiting a
discretization process. The reliabilities and the geodesic-like
features are applied in the point matching tasks to demonstrate
their effectiveness.

The rest of this paper proceeds as follows: Section 2 discusses
some related works. Section 3 details the procedure of building the
GGM. Section 4 describes the method to obtain the geodesic-like
features. Section 5 formulates the point matching as an energy
minimization task. Section 6 reports the experimental results. The
final section states our conclusions.

2. Related work

Point matching methods are applied in many situations. Pan
et al. propose to establish the point correspondence between a 3D
reference face and an input 3D face [24]. Sahbi et al. propose to
recognize different logos via a point matching process [27]. Due to
the wide application of the point matching problem, myriad stu-
dies dedicated to this problem [9,14]. The algorithms tackling this
problem can be roughly categorized into two types: algorithms for
rigid deformation matching problem and algorithms for non-rigid
deformation matching problem [8].

Algorithms for rigid deformation matching problem demand
the deformation type of the target object to be rigid. In spite of
their strict assumptions, these algorithms can solve lots of
matching problems. They are well studied and widely applied for
their relative simplicity and robustness [7]. The RANSAC algorithm
[12,25] samples the matching result to estimate the parameters of
a predefined transformation model. The ICP algorithm [33]

iteratively revises the transformation to minimize the distance
from one point set to the other point set. However, they have
difficulties in handling objects with non-rigid deformations.

In order to handle non-rigid deformations, algorithms for non-
rigid deformation matching problem are extensively studied. Chui
and Rangarajan propose the TPS-RPM [8] which uses the thin-
plate spline [4] to parameterize the non-rigid deformations.
Schnabel et al. propose the free-form deformations based on
multi-level B-splines with multi-resolution optimization [28].
These methods focus on modeling the deformations between
point sets.

In the meanwhile, another approach focuses on modeling the
geometric structure of each point set [10,16]. Tsin and Kanade cast
the matching problem as finding the maximum kernel correlation
configuration of two point sets, where the kernel correlation is
defined as a function of the entropy of the point set [32]. Myr-
onenko and Song represent the template points by a gaussian
mixture model such that the matching problem is tackled as a
probability density estimation problem [22]. Jian and Vemuri
propose to represent the input point sets using Gaussian mixture
models such that a statistical discrepancy measure between the
two corresponding mixtures is minimized [15]. Zhou and Torre
propose to represent each point set by a graph model and handle
non-rigid point matching problems from a graph matching [17]
point of view [13,36]. Scott and Nowak enforced an order preser-
ving constraint in a contour matching method to regularize the
matching process [29].

Some researchers [18,34] note that the point set is a manifold
[1,26,30] embedded in an image. The geometric structure of a
point set can be described by methods which describe the geo-
metric relations among data points on a manifold.

Inspired by the LLE algorithm [26] which is a manifold learning
algorithm, Li et al. propose an object matching method [18] based
on the fact that one point can be linearly reconstructed by its
neighbor points. Their method keeps the reconstruction weights
to describe the geometric relations among points. However, this
method is not suitable for non-rigid deformations since the re-
construction weights of each point change largely under non-rigid
deformations. Zheng and Doermann propose the PLNS algorithm
[34] which has a similar idea with another famous manifold
learning algorithm LPP [23]. Their method matches two points if
the correspondence of one point's neighbor is a neighbor of its
correspondence. This neighborhood relationship is much more
robust during non-rigid deformations. However, this method dis-
cards all the geometric information between pairs of points that
are far from each other, which abandons valuable information and
limits the matching precision.

The achievements of the above mentioned algorithms show
that it is fruitful to apply the methods which capture the geo-
metric structure on a manifold to the point matching problem. The
algorithm proposed in this paper is inspired by the Isomap algo-
rithm [30] which is another popular manifold learning algorithm.
Isomap represents the data points on a manifold with a graph
model. This algorithm describes the geometric structure of data
points depending on the geodesic distances between points. Since
the geodesic distance is insensitive to non-rigid deformations, this
distance measurement is a good choice for representing the geo-
metric structure between key points in the matching problem.
Elad and Kimmel propose an algorithm [11] which takes ad-
vantage of the geodesic distances and is used in the 3D object
matching problem. This algorithm is a typical work using the
geodesic distance to describe the spatial relations among key
points.

To exploit the essence of the geodesic distance on 2D images,
some studies come up with new measurements. Ling's inner dis-
tance method [19,20] for shape classification is the most famous
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