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a b s t r a c t

Machine learning methods employing positive kernels have been developed and widely used for clas-
sification, regression, prediction and unsupervised learning applications, whereby the estimate function
takes the form of a weighted-sum kernel expansion. Unacceptable computational burden with large
datasets and difficulty in tuning hyperparameters are usually the drawbacks of kernel methods. In order
to reduce the computational burden, this paper presents a modified version of the Feature Vector Se-
lection (FVS) method, proposing an approximation of the estimate function as a weighted sum of the
predicted values of the Feature Vectors (FVs), where the weights are computed as the oblique projections
of the new data points on the FVs in the feature space. Such approximation is, then, obtained by opti-
mizing only the predicted values of the FVs. By defining a least square error optimization problem with
equal constraints, analytic solutions of the predicted values of the FVs can be obtained. The proposed
method is named Feature Vector Regression (FVR). The tuning of hyperparameters in FVR is also ex-
plained in the paper and shown to be less complicated than for other kernel methods. Comparisons with
some other popular kernel methods for regression on several public datasets show that FVR, with a small
subset of the training dataset (i.e. selected FVs), gives results comparable with those of the methods
which give best results in terms of the prediction accuracy. The main contribution of this paper is the
new kernel method (i.e. FVR), capable of achieving satisfactory results with reduced efforts because of
the small number of hyperparameters to be tuned and the reduced training dataset size used.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Because of their computational simplicity and good general-
ization performance, kernel methods have received much atten-
tion for regression [10,13,25,26], classification [20,31,37] and un-
supervised learning [23,33,35]. Good and comprehensive reviews
of these methods can be found in [16,27]. Focusing on regression
and prediction, some popular kernel methods are Support Vector
Machine (SVM) [1,6,34], Kernel Gaussian Process (KGP) [15,29,45],
Kernel Ridged Regression (KRR) [11,12,40], Kernel Logistic Re-
gression (KLR) [19,50], Kernel Principal Component Analysis
(KPCA) [32,47].

The nonparametric and semi-parametric representer theorems
given by Schölkopf et al. [36] show that for a large class of kernel

algorithms, the minimum of the sum of an empirical risk term and
a regularization term in a Reproducing Kernel Hilbert Space
(RKHS) leads to optimal solutions for the estimate function that
can be written as a kernel expansion on training data points.
Specifically, in mathematical terms, the estimate function ( )xf of
kernel methods, such as SVM, KGP, KRR, KLR and KPCA, can be
formulated as

∑ α( )= ( )+
( )=

x x xf k b, ,
1i

N

i i
1

where ( )x xk ,i j is the inner product of the mapping of the data
points x x,i j, = …i j N, 1,2, , in the high dimensional feature space,
i.e. Reproduced Kernel Hilbert Space (RKHS), αi, = …i N1,2, , are
the unknown weights to be optimized and b is a constant that can
be zero or non-zero.

The unknowns αi, = …i N1,2, , and b in (1) have no physical
meaning and their values are determined by a quadratic optimi-
zation. In the optimization, there are three types of hyperpara-
meters: 1) the penalty factor C representing the trade-off between
the empirical risk term and the regularization term, 2)
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hyperparameters related to the definition of the empirical risk
term (e.g. the parameter ϵ in the ϵ-insensitive loss function of
SVM) and 3) hyperparameters related to the kernel function itself
(e.g. the parameter σ in the Gaussian Radial Basis kernel Function
(RBF), ( )= _ _ σ−‖ − ‖^ ( ^ )x xk e, x x

i j
i j 2/ 2 2 ).

Drawbacks of previous kernel methods include the computa-
tional burden required for training on large datasets, the difficulty
in tuning the hyperparameters and the difficulty of interpreting
the resulting expansion model.

Various works have been proposed to address these drawbacks
in the literature. Some approaches are proposed for easing the
computational burden of SVM training, by reducing the number of
training data points. They can be based on the characteristics of
the inputs in RKHS, e.g. KPCA [51], Feature Vector Selection (FVS)
[2], convex Hull vertices selection [17], Orthogonal Least Squares
(OLS) regression [7], Minimum Enclosing Ball (MEB) [42], Sparse
Online Gaussian Process (SOGP) [4], approximate extreme points
[52], random features [53,54], or on the prediction accuracy, e.g.
orthogonal least squares learning algorithm [8], Fisher Dis-
criminant Analysis [34], significant vector learning [17], kernel
F-score feature selection [28]. Methods like KPCA reduce the data
size by combining explicitly the training data points, but the
computation burden is not significantly decreased. All these
methods use the same form of the estimate function (1) and the
weights are some optimized empirical values, with no physical
meaning.

In order to reduce the difficulty in tuning hyperparameters,
Analytic Parameter Selection (APS) has been proposed to calculate
the hyperparameters values directly from the training dataset [9].
A combination of APS and Genetic Algorithm (GA) has also been
used, with superior prediction results [48]. Many optimization
approaches, e.g. Particle Swarm Optimization (PSO) [22], Monte
Carlo method (MC) [14], Particle Filtering (PF) [49], Competitive
Agglomeration (CA) clustering [18], asymptotically optimal selec-
tion [39], have also been proposed to optimize the hyperpara-
meters values. The computational burden is still a main obstacle
for these latter approaches, whereas APS is computationally effi-
cient but it cannot achieve satisfactory results, especially for the
penalty parameter.

Although the possibility of using super-computers can alleviate
the burden of tuning hyperparameters in many applications, it can
still be beneficial to reduce the computational burden in practice,
because super-computation may not be affordable for some
applications.

In this paper, we propose an approximation of the estimate
function in (1), based on a modified version of FVS. The proposed
method is called FVR, whose unknown parameters are tuned with
less computational burden than other methods because:

– in the optimization function, there is no hyperparameters
related to the regularization term and the loss function;.
– the tuning of hyperparameters follows an iterative procedure,
rather than the random process as in GA and some other
methods.
Also, the proposed method reduces the size of the kernel ex-

pansion in the estimate function by selecting directly part of the
training dataset, thus, reducing also the computational burden of
the training and test processes, whereas KPCA, OLS and some
other methods construct the kernel expansion which includes al-
ways all the training data points.

Finally, so far as the authors know, there have not been any
new approaches proposed to tackle the interpretability of an SVM
model. In this paper, by analyzing the distribution property of the
inner product (as mentioned in relation to (1) above, the kernel
function is an inner product of two vectors in RKHS) and the
geometrical relation between a training data point and the FVs

selected by FVS [2], the proposed method, i.e. FVR, is a geome-
trically interpretable kernel method, which describes the linear
relation between the predicted values of FVs and that of any other
data point. FVS selects the FVs which can represent the dimen-
sions of the training dataset in RKHS, and the linear relations be-
tween the predicted value of the FVs and those of the other data
points are derived from the general form (1) of the estimate
function. In order to keep all the information contained in the
selected FVs, an optimization problem with equal constraints (si-
milar to a LS-SVM) is defined to find the minimal Mean Squared
Error (MSE) (without regularization term) on the whole training
dataset (not only on the selected FVs). Thus, in the proposed ap-
proach the unknowns in the estimate function are the predicted
values of the FVs and a constant (zero or nonzero), which can be
calculated analytically. The equal constraints in the optimization
problem keep all the information in the FVs (i.e. no FV is ignored
through the loss function, as in SVM).

Note that the Reduced Rank Kernel Ridge Regression (RRKRR)
proposed in [5] already integrates FVS in a Least Square-Support
Vector Machine (LS-SVM) to decrease the size of the training da-
taset and, thus, the computational complexity related to training.
The differences between RRKRR and FVR lie in the objective
function of the optimization and in the estimate function (1). The
hyperparameters of FVR are less and more easy to be tuned. As a
result, comparisons on several public datasets show that FVR
performs better than RRKRR.

The comparisons with various popular kernel methods are also
carried out. Considering prediction accuracy and computational
burden show that FVR gives comparable results with the best
prediction results of benchmarks. The experiment results show
that minimizing the MSE on the whole training dataset of the
kernel model built on the selected FVs can guarantee the gen-
eralization performance of the model, even without a regulariza-
tion term. An efficient method for tuning hyperparameters is also
proposed.

The structure of the paper is as follows. Section 2 gives a brief
introduction to FVS and the derivation of FVR is also given in this
section, with analytic solutions for the unknowns. Prediction re-
sults and comparisons with several popular kernel methods are
illustrated in Section 3. Some conclusions and perspectives are
drawn in Section 4.

2. Feature vector regression (FVR)

In this Section, a brief introduction of the FVS in [2] is firstly
given with attention to its geometrical interpretation and FVR is,
then, derived from (1). An optimization problem is defined to
calculate analytically the unknown parameters in FVR. Insightful
considerations on the optimization problem are provided.

2.1. Feature vector selection

FVS proposed in [2] aims at selecting a number of data points
(which are called Feature Vectors (FVs)) =( ) = …S x y i M, , 1,2, ,i i ,
from the training dataset =( ) = …T x y i N, , 1,2, ,i i , with ≤M N , such
that the other data points can be expressed as a linear combina-
tion of the selected FVs in RKHS. Let us denote by φ( )x the function
which maps each training data point xi into a high dimensional
RKHS and by ( )x xk ,i j the kernel function, defined as the inner

product φ φ( ) ( )x x,i j in RKHS. For a given x, the Local Fitness (LF)
with respect to the feature space S is calculated as:
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