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Due to occlusion and measurement errors, there commonly exist holes, inaccurate depth values and
noises in depth maps acquired by low-cost Kinect devices. The artifacts seriously affect the practical
applicability of depth maps and thus filling holes is a critical pre-processing task for 3D applications.
Without the assistance of the accompanied color image, the representative bilateral filtering and in-
painting methods hardly provide satisfactory recovery results. Since the depth map containing holes can
be naturally regarded as a corrupted low-rank matrix of missing entries, this paper addresses hole filling
problem from the perspective of low rank matrix completion. Our method identifies the positions of
invalid pixels in hole regions, and then incorporates the known entries into the formulation which
considers the low-rank constraint on results and the sparse constraint on residuals. Owning to the well-
established principle component pursuit theory, our method substantially boosts the Kinect depth re-
covery performance in terms of accuracy and reliability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many visual scenarios, depth information plays an important
role, such as depth based virtual viewpoint rendering, 3D model-
ing and gesture recognition. These stereo vision related applica-
tions pose great challenges for the acquisition, coding and synth-
esis of depth information [1,2]. Microsoft's Kinect provides a great
convenience for real-time and active acquisition to the scene
depth information. However, the structured light measurement
method used by Kinect is susceptible to the impact of occlusion,
transparent objects and rich texture regions, leading to holes or
wrong depth values at object edges and flat regions in captured
depth maps. Because such artifacts seriously affect the practical
applicability of depth maps, filling holes is a critical pre-processing
step for Kinect based applications.

Various methods have been developed to recover lost depth
information and eliminate noise simultaneously for Kinect depth
maps, which roughly fall into two categories: filtering and in-
painting. Buades et al. [3] used a non-local filtering scheme to
enhance depth maps, whereas it significantly blurs the sharp
edges. Based on a joint histogram of a high-resolution color video
and its corresponding low-quality depth video, Min et al. [4] in-
stead proposed a weighted mode filtering method to prevent the
depth boundaries from being blurry. As a widely used edge-
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preserving filtering approach, Fu et al. [5] incorporated bilateral
filter into temporal motion compensation to recover the missing
depth pixels. However, since depth maps are inherently dis-
continuous in temporal domain, a certain degree of edge dilation
is present and a number of small holes remain. Camplani et al. [6]
further proposed to apply iteratively a joint-bilateral filter to Ki-
nect depths, in which the filter weights are specified with respect
to three different factors: visual data, depth information and a
temporal-consistency map. Unfortunately, this method fails to
account for the overall contribution of all the pixels around the
hole centre and often yields unsatisfactory results when large
holes exist. Yang et al. [7] employed a frequency-counting based
non-linear filter to improve the accuracy of the high resolution
depth map, which is whereas primarily severed to remove sensor
noise in the captured low-resolution depth map rather than fill in
holes. Hu et al. [8] advocated a color image guided locality reg-
ularized representation to reconstruct the missing depth pixels,
which analytically computes the filter weights by a ridge regres-
sion model in the accompanied color image. Due to the closed-
loop approach for solving weights, this method can generally ob-
tain more optimal reconstruction weights than above mentioned
bilateral filtering methods and thus produce impressive results.
In contrast to filtering algorithms which more or less result in
poor results near depth discontinuities, inpainting techniques
seem more appealing. A popular inpainting algorithm is the Fast
Marching Method (FMM) by Alexander Telea [9], but it does poorly
when applied to depth maps as it is designed for generic hole
filling in colored images. Liu et al. [10] proposed an extended FMM
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approach with an aligned color image guiding depth inpainting. In
an energy minimization based approach [11], an additional TV
regularization term is introduced to produce smooth depth maps
with sharp boundaries preserved. Relatively, the techniques ade-
quately accounting for depth discontinuities between objects can
faithfully restore depth maps by Kinect.

Previous methods generally took advantages of the corre-
sponding color image to enforce their filtering or inpainting per-
formance. Without the assistance of the accompanied color image,
they hardly provide satisfactory results in terms of depth-edge
preservation. Since high-quality color images are not always
available in some scenarios, for instance, in a poor illumination
environment, and meanwhile the noisy color image can often
mislead depth map enhancement because adjacent objects may
have exceedingly close colors [12], it is meaningful to develop
approaches dedicated to the restoration of depth maps in-
dependent on color images.

Depth maps have both characteristics of sudden changes at edge
regions and large flat areas inside objects. As shown in [13], the regular
patterns within the object, especially some symmetry structures, can
be seen as constituting a low-rank matrix, while the presence of oc-
clusion, corruption and other errors can be seen as a sparse matrix.
Inspired by recent progress in low rank matrix recovery research [14—
16], we propose a new hole filling method for Kinect depth maps via
low rank matrix completion. This method recovers missing depth
values by decomposing the Kinect depth map into a low rank matrix
and a sparse error matrix, which represent a “desirable” depth map
and an error data destroying its low-rank structure, respectively.
Moreover, as the spatial locations of holes in Kinect depth maps can be
explicitly identified, in other words, the missing entries in constituted
incomplete depth matrix are already available, their coordinates can
be used to facilitate the optimization on low-rank matrix completion.
Experimental results show that our method can reliably remove arti-
facts, smooth depth maps in homogeneous regions and improve the
accuracy near object boundaries.

The remainder of this paper is organized as follows. Section 2
particularly presents the depth filling method via position-guided
low rank matrix completion. Section 3 shows the experimental
results. Finally, conclusions are given in Section 4.

2. Proposed method

This section mainly concerns the proposed representation for
position-guided low rank matrix completion and its optimization
as well.

Low rank matrix completion problem considers how to com-
plete a low rank matrix from an incomplete observation with both
missing and corrupted entries. To be more specific, let matrix
P € R™" be the observed Kinect depth map, unknown matrix
Q € R™" denote the objective counterpart with the missing en-
tries to be assigned, Q is expected to be reconstructed by filling in
holes in P with the help of matrix complete theory. This procedure
depends on two constraints: small differences between P and Q;
low rank of Q. The first constraint is measured with the Frobenius
norm II-ll; of a matrix, while the second is related to nuclear norm
IIl-ll. The nuclear norm II-l, of a matrix X is defined as the sum-
mation of its singular values, i.e., IIXI, = ¥, 6;(X), where 6,(X) de-
notes the i largest singular value. In the typical matrix comple-
tion problem [14], Q is recovered from its incomplete observation
P by solving the following minimization:

: 2
mqlnllQ Pl + pQll,, N
where u >0 is a weighting parameter. When the observation
matrix has only a very few number of missing values, Eq. (1) can

be used to address a variety of image processing questions. For
example, Lu et al. [17] cast depth completion and denoising as an
incomplete matrix factorization problem. However, due to large
errors or invalid depth values, the occluded depth map tends to
have outliers in the known entries so that the direct application of
Eq. (1) to depth completion will damage fine depth details.

In order to overcome the dilemma of typical matrix completion
algorithms, robust principle component pursuit (PCP) [16] was
proposed to recover a low rank matrix with sparse outliers on the
observed entries. Particularly, it introduces another unknown
sparse matrix E to describe the outliers and recovers both Q and E
by solving
r}‘ll‘iEnIIQII* + MEl; s.t. P=Q+E, @)
where #; norm denoted by II-Il; accumulates the absolute values of
all the entries in a matrix, reflecting the sparsity constraint. A > 0
is an appropriately chosen regularization parameter, balancing the
tradeoff between the rank of matrix Q and the sparseness of error
matrix E. As suggested in [16], the penalty parameter A can be

fixed as1 = —L. Alternatively, A will be empirically tuned to
Jmax(m,n)

give the best results by slightly adjusting it around the theoretical
candidate.

PCP assumes the locations of the missing entries in the ob-
served depth to be unavailable. However, if the locations of some
of the corrupted entries are known a priori, we can leverage that
information to facilitate solving the matrix completion problem. In
reality, the missing pixels in the Kinect depth map have distinctive
characteristics, which can thus be used to identify their spatial
positions. To illustrate this issue, we show a depth map and its
3-dimensional surface in Fig. 1. The dark black hole areas in the
depth map in Fig. 1(a) are associated with the missing pixels, and
the depth levels are depicted in different colors in Fig. 1(b). As
obviously shown in the 3-dimensional plot, the depth magnitudes
in holes are exactly zeros or close to zeros while others are much
larger than zeros. Therefore, depth levels imply their spatial co-
ordinates in depth map so that we can exploit such information to
pursue the optimal solution of PCP problem.

Mathematically, we have a problem of recovering a low rank ma-
trix with known exact indexes of the missing entries. We denote by 2
the locations of available entries in the observed matrix P defined in
Eq. (2). The linear subspace 2 of m x n matrices just corresponds to
the complementary to the locations of missing entries. Let z, re-
present the orthogonal projection operator in the subspace @,

X@, j, ifG, j) e 2

X\ j) = .
7X@, 1) {0‘ otherwise ®

Since the depth pixels in holes are completely unavailable, to
be filled in, it is meaningless to pursue the minimal deviation from
their latent values. Therefore, we incorporate known entries of
subspace @ into the formulation Eq. (2) and have the following
position-guided form:

H(‘zl‘iglllQll* + AEIl s.t. 7,(P) = 7,(Q + E). @

The above problem is just a variant of Eq. (2) imposed on the
spatial constraint of position prior information. Thus, it can be
seen an extension of existing results for the low-rank matrix
completion problem [14,16], which wishes to recover a low-rank
matrix from large but sparse errors. Relative to the naive appli-
cation of Eq. (2) to the hole-filling problem in depth maps, our
representation explicitly exploits the full use of the known co-
ordinate positions of missing entries, leading to more ideal re-
covery and efficiency computation.

Instead of direct optimization on Eq. (4), we solve its un-
constrained Lagrangian version:
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