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a b s t r a c t

As a powerful visual model, convolutional neural networks (CNNs) have demonstrated remarkable
performance in various visual recognition problems, and attracted considerable attention in recent years.
However, due to the highly correlated bands and insufficient training samples of hyperspectral image
data, it still remains a challenging problem to effectively apply the CNN models on hyperspectral images.
In this paper, an efficient CNN architecture has been proposed to boost its discriminative capability for
hyperspectral image classification, in which the original data is used as the input and the final CNN
outputs are the predicted class-related results. The proposed CNN infrastructure has several distinct
advantages. Firstly, different from traditional classification methods those need hand-crafted features,
the CNN model used here is designed to deal with the problem of hyperspectral image analysis in an
end-to-end way. Secondly, the parameters of the CNN model are optimized from a small training set,
while the over-fitting problem of the neural network has been alleviated to some extent. Finally, in order
to better deal with the hyperspectral image information, 1 � 1 convolutional layers have been adopted,
and an average pooling layer and larger dropout rates have also been employed in the whole CNN
procedure. The experiments on three benchmark data sets have demonstrated that the proposed CNN
architecture considerably outperforms other state-of-the-art methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of remote sensors, the acquisition
and collection of hyperspectral data has become much easier and
more affordable, making hyperspectral image analysis to be one of
the most promising techniques in many practical applications,
including precision agriculture, environmental monitoring, mili-
tary surveillance, etc. [1,2]. Hyperspectral image (HSI) data often
contains hundreds of spectral bands over the same spatial area,
which has provided valuable information to identify the various
materials [3,4]. HSI classification is similar with image labeling in
computer vision field [5]. One difference between them is the
number of data bands. There are normally about 200 bands for a
HSI, but only 3 or 4 ones in image labeling. Another difference is
the number of labeled sample. For image labeling, it is relatively
easy to label samples. In HSI classification, due to the difficulty and
expense of manually labeling, the limited availability of labeled
training samples is the main obstacle of hyperspectral image
classification. Hence the small sample set (3S) problem has at-
tracted increasing attention in recent years [6,7].

One reasonable way to tackle the 3S problem is dimensionality
reduction [8,9], which could largely reduce the impact of Hughes
phenomenon, i.e., a large amount of labeled samples is needed for
the high-dimensional data to obtain reliable results [10]. Di-
mensionality reduction can be accomplished by transforming the
original hyperspectral data into a low-dimensional space (referred
as feature extraction) [11,12], such as principal component ana-
lysis (PCA) [13,14], independent component analysis (ICA) [15],
manifold learning [16] or directly picking out the most re-
presentative bands from the hyperspectral data (referred as band
selection) [17,18], such as the ranking-based methods [19,20] and
clustering-based methods [8,21,22]. But some important in-
formation may be lost during the dimensionality reduction pro-
cess. More severely, the features obtained through dimensionality
reduction in the spectral domain cannot fully characterize the
properties of the materials, hence more discriminative features
should be extracted.

Fortunately, spatial information, which reflects the fact that the
adjacent pixels in the spatial domain belong to the same class with
a high possibility, is a valuable complement to the spectral sig-
natures, and has been extensively studied for hyperspectral image
classification [23]. Specifically, the mathematical morphology
method applies the opening and closing morphological transforms
on several principal components to obtain features containing
spatial structure information [24]. Other spatial filters [25,26] are
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also used to exploit the spatial regularity of materials. Moreover,
the contextual information can be used to refine the classification
results through a regularization process in the postprocessing
stage [27]. However, a large number of training samples are gen-
erally required to adequately characterize the large variability of
the objects, which is difficult to meet in practice. Alternatively, in
order to extract the joint spatial-spectral features, three-dimen-
sional wavelet-based methods, especially the Gabor filters, have
been proposed to simultaneously fuse the spectral and spatial
information, which has shown competitive classification perfor-
mance for the 3S problem [28–30]. Recent advances have revealed
that Gabor filters with different predefined orientations and scales
are a kind of convolutional filters, whereas the popular convolu-
tional neural networks (CNNs) can learn convolutional filters au-
tomatically [31]. These encouraging results have motivated us to
apply the CNN model for hyperspectral image classification.

A convolutional neural network is composed of alternatively
stacked convolutional layers and spatial pooling layers. The con-
volutional layer is to extract feature maps by linear convolutional
filters followed by nonlinear activation functions (e.g., rectifier,
sigmoid, tanh, etc.). Spatial pooling is to group the local features
together from spatially adjacent pixels, which is typically done to
improve the robustness to slight deformations of objects. CNNs
have been long studied and applied in the field of computer vision.
More than a decade ago, LeCun et al. [31] trained multilayer neural
networks with the back-propagation algorithm and the gradient
learning technique, and then demonstrated its effectiveness on the
handwritten digit recognition task. The deep CNNs have exhibited
good generalization power in image-related applications. Recently,
Krizhevsky et al. [32] achieved a breakthrough, outperforming the
existing handcrafted features on ILSVRC 2012 which contains 1000
object classes. Since 2012, CNNs have draw a resurgence of at-
tention in various visual recognition tasks such as image classifi-
cation [32,33], semantic segmentation [34,35], object recognition
[36], video analysis [37], etc. Recently the networks are going
deeper, such as GoogLeNet [33] which won 2014 ILSVRC classifi-
cation challenge [38] by employing 22 layers. In [39] the number
of layers of the proposed residual nets reaches to 152 and achieves
better performance.

There are some deep learning related works on HSI classifica-
tion in the literature. Such as in [40], deep stacked autoencoders
are employed to extract features. The autoencoder is a kind of
unsupervised method. The proposed method in [40] combines
principle component analysis (PCA), autoencoders and logistic
regression, and it is not an end-to-end deep method. An end-to-
end deep CNN method is proposed in [41]. The method takes the
raw data as the input and outputs the predicted class labels. The
number of training samples of each class is 200, and it is a relative
large number.

We propose a novel CNN structure for hyperspectral image
analysis, where a pixel and its neighbors in a hyperspectral image
are taken as inputs of the CNN, and the final CNN output is the
predicted class labels. Our designed CNN structure can be illu-
strated in Fig. 1. The major contributions of this work can be
summarized as follows:

� Different from common visual information (e.g., RGB images),
hyperspectral images can collect and process visual signals
across different electromagnetic spectra. Most traditional HSI
classification methods employ hand-crafted features. We design
a novel CNN structure to deal with the hyperspectral image
analysis problem in an end-to-end way, and the network can
learn features automatically.

� Under the limitation of small training samples, we employ some
network strategies (e.g., data augmentation, lager dropout rates,
etc.) to alleviate the over-fitting problem in the process of

learning network parameters.
� For better coping with the hyperspectral image information, we

adopt the 1� 1 convolutional layers to analyze the hyper-
spectral information, and use an average pooling layer in the
whole CNNs.

� Compared with several popular features, i.e., raw spectral fea-
tures, morphological features, and 3D Gabor features with tra-
ditional classifiers, the state-of-the-art classification results on
three popular data sets verify the effectiveness of the proposed
CNN framework. And the corresponding CNN model will be
released and serve as the benchmark for the problem of hy-
perspectral image analysis in the research community.

The remaining part of the paper is organized as follows. The
proposed network structure and design principles are presented in
Section 2. The data sets used in the experiments and the evalua-
tion methods are introduced in Section 3. Section 4 is the ex-
perimental results and analysis. The last section, Section 5, con-
cludes the paper.

2. The CNN structure design

Since the training samples are limited, the main principle in our
designed CNN structure is to alleviate the overfitting problem and
gains a good generalization. We employed 1� 1 convolutional
kernels, improved dropout rates, discarded full connection layers,
etc. The CNN structure and parameters designing are described in
the following parts in detail.

2.1. Network structure

The network structure is illustrated in Fig. 1.1 There are 3 con-
volutional layers in our network structure. The first two convolu-
tional layers are followed by normalization layers and dropout
layers. The input data is sent to the first convolutional layer, and
the data size is × × N5 5 where N is the number of channels for
hyperspectral images. In the convolutional layers, 1� 1 sized
kernels are employed as suggested in [42]. In the first convolu-
tional layer, there are 128 filters. So the output of the first con-
volutional layer is × ×5 5 128. After the convolution step, a 2�
2 normalization is operated on each channel, and the next step is a
dropout operation. After that the data is sent to the second con-
volutional layer, and also followed by a normalization layer and a
dropout layer as the first convolutional layer. The output of the
third convolutional layer is × × C5 5 where C is the number of
classes. The global average pooling (GAP) is following the third
convolutional layer. The input to GAP is the feature map with the
size of × × C5 5 . The GAP computes the average values on dif-
ferent channels, and there are C channels in this situation. So the
final output of the network is a × C1 vector. If the ith element in
the vector has the maximal value, then i is the predicted label for
the input sample. The detailed design principles of the network
are described in the following subsection.

2.2. Parameter learning for the network

Data augmentation: Because the training samples are limited,
the learning model tends to overfitting. To reduce overfitting in
the training stage, one of the most common methods is to trans-
form the training samples to many different ones. The transform is
named as data augmentation. In our experiments, each pixel and

1 All the source codes and model files of the proposed CNN framework will be
released to the community.
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