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a b s t r a c t

This paper proposes a way of providing transparent and interpretable results for ELM models by adding
confidence intervals to the predicted outputs. In supervised learning, outputs are often random variables
because they may depend on information that is unavailable, due to the presence of noise, or the pro-
jection function itself may be stochastic. Probability distribution of outputs is input dependent, and the
observed output values are samples from that distribution. However, ELM predicts deterministic outputs.
The proposed method addresses that problem by estimating predictive Confidence Intervals (CIs) at a
confidence level α, such that random output values fall between these intervals with probability α.

Assuming that the outputs are normally distributed, only a standard deviation is needed to compute
CIs of a predicted output (the predicted output itself is a mean). Our method provides CIs for ELM
predictions by estimating standard deviation of a random output for a particular input sample. It shows
good results on both toy and real skin segmentation datasets, and compares well with the existing
Confidence-weighted ELM methods. On a toy dataset, the predicted CIs accurately represent the variable
variance of outputs. On a real dataset, CIs improve the precision of a classification task at a cost of recall.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Extreme Learning Machines [1–3] (ELM) are fast and robust
[4,5] methods for training feed-forward neural networks that have
the universal approximation property [6] and obtained numerous
applications in regression [7–9] and classification [10] problems.
They are an active research topic with multiple extensions and
improvements proposed over the last decade.1

ELMs are powerful non-linear methods, but they share one
common drawback of non-linear methods in practical applica-
tions, which is a non-transparency of results (predictions). A pre-
diction made by a linear model from input data is easily explained
and interpreted in terms of the coefficients of the input data fea-
tures. Results with an explanation are easier to trust and apply for

people outside the Machine Learning field. Non-linear models lack
such transparency, so their results are less trusted, and thus non-
linear methods (including ELM) are sometimes rejected despite
supreme performance compared to linear methods.

More reliability and intuition can be added to outputs predicted
by ELM model by computing confidence intervals (CIs) [11,12] for
them. Here, an α⁎100% CIs are the upper and lower boundaries on a
random variable, such that samples from that variable fall between
the intervals with probability α⁎100%. Outputs of a supervised
prediction task are often random variables because the training data
is corrupted by noise, the outputs may depend on information not
present in inputs, or the underlying projection function itself may
be stochastic. The observed output values are samples from the
actual random outputs. The Ordinary Least Squares method used for
learning the output weights in ELM assumes that an output for a
given input is normally distributed, and ELM predicts mean values
of the outputs. Variance of outputs is also needed for an estimation
of CIs, and with an additional assumption of equal variance over the
whole dataset its maximum likelihood estimator is given by the
Mean Squared Error (MSE) [13].
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However, an assumption of equal variance over the whole da-
taset is a limitation in practical applications that require the
highest precision at a cost of recall [10], in ensembling the results
of multiple methods, and in exploring ELM performance over the
available data. An input-dependent variance of outputs allows for
variable CIs that separate part of data with reliable and stable
predictions from other parts where an ELM model is unstable and
inaccurate for some reason (like insufficient amount of training
data in that region, a complex form of underlying transformation
function, or being at model boundaries). This paper estimates the
input-dependent variance of outputs by sampling predicted out-
puts at the same input point from different ELM models.

Unfortunately, a simple sampling from ELM predictions is in-
sufficient for an output variance estimation, because an ELM
model with correct hyper-parameters and enough training data
provides precise estimation of the mean value of outputs disregard
their variance. An original idea of this paper is to deliberately put
ELM in sub-optimal conditions by training it on a small subset of
the training data, keeping hyper-parameters selected on the full
training set. In this setup, an ELM model starts to overfit due to
insufficient amount of data and excessive model complexity. Pre-
dictions of an overfitted ELM model differ more from the true
mean of random outputs, and that difference depends on the
variance of outputs corresponding to a particular input region. An
input-dependent variance of outputs is computed by analyzing
such behavior of ELM models. Using the input-specific variance
and an ELM prediction as a mean, CIs are constructed to cover
α⁎100% of probability in output distribution of a given ELM output.

Another approach to estimation of CIs is to assume a prob-
ability distribution on the model weights. Then predicted outputs
and their CIs are obtained simultaneously from the parameters of
weights distribution. An example of such methods is Gaussian
Processes [14]. For ELM model, such methods are known in lit-
erature as a family of Bayesian ELM methods [15–17]. A Confidence
Weighted ELM [11] (CW-ELM) is another recent approach that
computes input-dependent CIs. It outperforms Bayesian ELM, and
in fact can be applied on top of any other ELM model just like the
proposed method. CW-ELM is explained in the next Section 2, and
the comparison results are given in the experimental Section 4.

The next Section 3 introduces the method of computing input-
specific CIs. The experimental Section 4 presents the examples of
confidence intervals on an artificially made toy dataset, a com-
parison of CIs on a benchmark dataset to the Bayesian ELM family
of methods, and a visualization of results (as well as a performance
on large data) for the real image segmentation task. In the con-
clusion, Section 7, the method is summarized and further research
directions are discussed.

2. Summary of confidence-weighted ELM

A confidence-weighted ELM is a method that provides con-
fidence intervals for particular forecasts of an Extreme Learning
Machine. As noted by the authors, CW-ELM can be applied on top
of any improved ELM method ([11], Section 4.2) such as Optimally
Pruned ELM [4] (OP-ELM). The latter is used as a base ELM model
stand-alone, in combination with CW-ELM and the proposed
method for a fair comparison of the results.

The CW-ELM assumes that the output weight vector is nor-
mally distributed  β Σ∼ ( )w ,p where β ∈ p is an estimate of the
mean value of output weights (or the output weighs themselves
for deterministic algorithms) obtained from some other ELM
training method, such as OP-ELM. Matrix Σ ∈ ×p p is a positive
definite covariance matrix. Parameter p is the number of hidden
neurons in the base ELM model, like the number of selected
neurons in OP-ELM.

As a predicted output = ( ) ∈ [ ]y f i Nx w, 1,i i
T for N data samples,

it follows the distribution
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Parameters of the least informative distribution that keeps the
targets within the aforementioned CIs are found by the solution of
the following problem:
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Eq. (3) is hard to solve directly, thus a simplified version is used.
The covariance matrix Σ is assumed to be diagonal

λ λ λΣ Λ= = ( … ) >diag , , , 0p i1 . Then a simplified problem (ignoring
the constant term β βT ) is formulated as
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Let us construct matrix G by taking element-wise square of all
elements in the hidden layer output matrix H of an ELM, and
define vectors ξ ξ ξ= [ … ], , N

T
1 , βξ = | − ( ) | ∈ [ ]t f i Nx , 1,i i i

T 2 and
λ λ λ= [ … ], ,i p

T . Then a re-arranged optimization task is written as
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The solution to Eq. (5) can be computed by various approaches.
The experimental section uses a fast conic optimization method
from [18], that has an efficient implementation with an interface
to Python.2 Once the optimal value of λ is known, the CIs for a test
sample ⁎x are computed as
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3. Confidence intervals method for extreme learning machines

3.1. Intuition

In supervised prediction, true outputs are often random variables,
and the training outputs are samples from them. Random outputs can
be approximated by the normal distribution, mean value of that is easy
to predict (i.e. by the Ordinary Least Squares method). Variance of the
outputs distribution is estimated by sampling multiple points from it.

If variance is assumed to be equal over the whole dataset, then
all dataset outputs are samples from the same distribution. Its
variance is easily computed after subtracting the mean, effectively
what MSE does. However, if the output variance is input-depen-
dent, then the dataset outputs are samples of different distribu-
tions, and only one sample is available for variance estimation in
distribution of each particular output, that is not enough.

2 http://www.cvxpy.org.
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