
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A robust coherent point drift approach based on rotation invariant shape
context

Pengpeng Zhanga, Yu Qiaoa, Shengzheng Wangb, Jie Yanga,⁎, Yuemin Zhuc

a Shanghai Jiao Tong University, Institute of Image Processing and Pattern Recognition, Key Laboratory of System Control and Information Processing,
Ministry of Education, Shanghai, China
b Shanghai Maritime University, Merchant Marine College, Shanghai, China
c CNRS UMR5220, CREATIS; Inserm U1206; INSA Lyon; University of Lyon, France

A R T I C L E I N F O

Communicated by Ma Lifeng Ma

Keywords:
CPD
Rotation invariant shape context
Adaptive prior probability
Adaptive outlier ratio
Point set matching

A B S T R A C T

Point set matching is a common problem in many domains, such as medical image analysis, object recognition,
3D reconstruction, and motion tracking. Coherent point drift (CPD) appears as an efficient algorithm to align
two point sets. It treated point set matching as a problem of Gaussian mixture density estimation. But there are
four drawbacks in the CPD method: outlier ratio given manually, equal prior probability for the mixture model,
lack of shape information and failure for large rotation transformations. To deal with these limitations, we
propose a robust CPD approach based on rotation invariant shape context. First, a rotation invariant shape
context (RISC) is constructed for each point of the two sets to keep the rotation invariance of shape features.
Then an adaptive prior probability and outlier ratio are computed based on RISC. For each Gaussian mixture
model (GMM) component, the prior probability is linked to the number of the sample points derived from this
component. Finally, the correspondence and transformation are achieved through expectation-maximization
(EM) process. The results on synthetic and real data show that our method is a robust and effective non-rigid
point matching approach.

1. Introduction

Point set matching is a fundamental problem in many domains,
such as medical image analysis [1], object recognition [2,3], 3D
reconstruction [4], and motion tracking [5]. The goal of matching is
to find the meaningful correspondence between two point sets and
estimate the spatial transformation based on the found correspon-
dence. The locations of points, which are the simplest form of the
feature, are usually extracted to construct the point sets.

The application of point set matching is impacted by two factors.
One is the robustness to degradations, for instance, noises, outliers and
occlusion points stemming from image acquisition and feature extrac-
tion. Another is the capability of processing high dimensional point
sets. There are two general problems in point set matching: unknown
correspondence and unknown transformation. If one of the two
problems is fixed or known, it is easy to obtain another one, so they
are two coupled problems.

Since decades, many methods have been proposed to solve this
coupled problem. Iterative closest point (ICP) [6–8] is the commonly
used rigid point set matching method. It iteratively determines the
correspondence based on L2-norm distance and obtains spatial trans-

formation related to the point sets. Because of the one-to-one
correspondence in each iteration, ICP is easy to get stuck in local
minimum. Besides, ICP needs a good initial transformation to assign
two point sets.

Compared with rigid transformation, there are many non-rigid
transformations all over the real world, such as soft tissue deformation
in the cranio-maxillofacial surgery, deformable motion tracking, and
surgical planning and evaluation. Several variants [9–17] of ICP have
been introduced to solve non-rigid point set matching problem. There
are two common iterative steps in these methods: (1) finding the
current correspondence between two point sets; (2) building the new
transformation based on the current correspondence. Robust point
matching (RPM) [12] is one of them. In contrast to ICP, RPM adopts
soft assignment and deterministic annealing to improve matching
performance. However, RPM is not really a probability method. In
the E-step of expectation maximization (EM) [18], RPM does not attain
truly the posterior probability.

Recently, some non-rigid point set matching algorithms based on
probability have been proposed, especially on the Gaussian mixture
model (GMM). This type of methods can be classified into two
categories. One category is that the matching problem is treated as
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the maximum similarity problem of two distributions, and both of the
two point sets are represented as GMM centroids. The representative
method is Kernel correlation (KC) based point set matching approach
[19], and its cost function is expressed as KL-divergence between two
distributions. The drawback of KC-based methods is that it can only get
the transformation.

The other category is the methods that represent one point set as

GMM centroids and the other set as sample points from this compo-
nent of GMM. So the point set matching problem is regarded as a
mixture density estimation problem. Coherent point drift (CPD)
[20,21] is the representative method. The method can deal with high
dimensional point sets and appears robust to outliers. To handle the
outliers in the point set, a uniform distribution is added to express the
distribution of outliers.
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Fig. 1. Flowchart of the robust CPD based on rotation invariant shape context (SCCPD).
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Fig. 2. Scheme of calculating the rotation invariant shape context (RISC).
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Fig. 3. Scheme of determining the adaptive prior probability and outlier ratio.
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