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A B S T R A C T

The mechanisms of normal aging of the human brain are insufficiently understood at present. This lack of
systematic understanding impedes the exploration of new treatments for age-related diseases and approaches to
extend our lifespan. The objective of this study was to develop a novel evolution model to simulate the dynamic
alteration processes in functional brain networks that occur during normal aging, using computational
experiments. Six global topological properties and a nodal metric were applied to characterize functional
magnetic resonance imaging data on the brain networks of individuals from three different age groups.
Comparing these real-world results to our simulation results showed that our evolution model captures well the
dynamic processes of normal aging in functional brain networks. Our research shows that a tradeoff exists
between the constraints on the degree distribution and the tendency toward clustered connections of functional
brain networks during normal aging. These computational experiments provide a more comprehensive
perspective that addresses dynamic alterations across a large time scale, which traditional research techniques
cannot achieve. Our model is therefore of profound significance for exploring the mechanisms of normal aging.

1. Introduction

The human brain is known as one of the most complex systems,
consisting of billions of neurons that form a hierarchical and highly
self-adapting organizational structure [1]. The brain, as a plastic
system, generally shows changes in morphology that are associated
with a decline in cognitive function during normal aging, such as the
loss of gray matter and thinning of the cerebral cortex on a macro scale
[2,3]. The clinical manifestations of dementia and other age-related
neurodegenerative diseases may be an amplification of this age-related
neural dysfunction [4]. However, the dynamic processes and mechan-
isms of normal aging in the brain remain unclear. Addressing this issue
is of profound significance not only for a better understanding of
normal cognitive aging but also for the early diagnosis and treatment of
age-related diseases.

Neuroimaging technology has been widely used to investigate the
neural basis of age-related cognitive alterations in vivo [5]. Resting-
state functional magnetic resonance imaging (fMRI) has been an
important approach in the exploration of functional brain changes
since 1995 because of its non-invasive nature and advanced methods of
data acquisition. Numerous studies have assessed the abnormality of

functional brain fluctuations during normal aging [6], and several brain
regions with dysfunctional activity have also been reported [7].

Graph theoretic analysis provides a new perspective to characterize
complex network properties. It has been recently widely applied to the
study of the functional integration and segregation of the human brain.
This analysis describes the brain as a graph consisting of numerous
nodes and connections, which represent brain regions and functional
inter-regional connectivity, respectively [8]. He et al. found that nodal
degree is subject to an exponentially truncated power law in anatomical
brain networks [9]. In a further study by Hayasaka and Paul, the same
conclusion was drawn in macroscopic functional brain networks [10].
This conclusion is interpreted as beneficial resistance against massive
epidemics in the human brain.

The graph theoretic method has also been used specifically in the
study of alterations in functional brain networks during normal aging
[11,12] and in age-related diseases, such as Alzheimer's [13] and
Parkinson's [14]. Through graph theory, previous studies have demon-
strated that the functional brain network exhibits a small-world
architecture [11,15,16], which means that the functional brain network
achieves a balance between functional segregation and integration.
However, this organization becomes a segregated system during aging
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[15,17,18], i.e., information processing in the human brain becomes
more localized among the old.

The clustering coefficient is a basic metric of network, which is
considered an index of functional segregation [19]. Sala-Llonch et al.
further indicated that the higher clustering coefficients of some brain
regions are related to poorer performance in verbal and visual memory
[15]. These researchers also attributed the increasing small worldness
to the higher global clustering coefficient among older adults. The
localized brain system may therefore result in age-associated dysfunc-
tion [15]. As a result, it can be inferred that the clustering coefficient
would increase during normal aging.

Global efficiency and number of long edges in a functional brain
network measure the parallel information transfer in the network
[9,20], and they are the metrics of functional integration. Recent
studies systematically investigated alterations in the topological orga-
nization of functional brain networks and suggested that global
efficiency and long edges alter across the whole lifespan [21,22].
These changes may potentially underlie the degradation of functional
brain network in normal aging.

On the other hand, the existence of a compensatory mechanism for
the observed functional deficits has been demonstrated: the recruit-
ment of more brain regions [23]. Gutchess et al. concluded that
prefrontal regions serve a compensatory role for the age-related decline
in medial temporal activation during scene encoding [24]. A more
recent study by Cao et al. also indicated that the more proximal regions
of the dorsal anterior cingulate cortex, which are connected with the
insula, are recruited in older adults to maintain their capacity to
respond to salient information [25]. This was suggested to be part of
the reason why the old tend to show decreased cognitive performance
but well-maintained emotional well-being [25]. These results indicate
the potential for a general capacity for adaptation to the functional
deficits that occur during normal aging [26], which reflects that
increasing additional connections are established among newly re-
cruited regions.

Most real networks, such as the internet, social networks, and
power networks, generally change and develop at every moment,
exhibiting dynamic behaviors and plastic structure rather than a static
state [27]. Network evolution, as a simulation approach based on
computational experiments, has been effectively applied by previous
studies in exploring the dynamic characteristics of networks of real
systems [28,29]. Vertes et al. established a hemisphere-brain network
using several generative models to simulate the formation mechanism
of the human brain [30]. They concluded that a preferential model
accorded by clustering could better capture real brain networks.
However, this is a generative model. It starts from an isolated node
and continues adding nodes and edges in the network to ‘generate’ a
final network, which is not an evolution process that changes from one
existing state to another. A currently much-researched topic of
dynamic brain connectivity in fMRI, which focuses on the alterations
in functional connectivity during a whole fMRI scan, is evolution
research on the time scale of minutes [31–33]. However, few studies
have explored the evolution mechanism of either functional or anato-
mical brain networks during normal aging on a large time scale.

In the present study, we systematically investigated the topological
properties of the functional brain networks of young and old adults.
Our results suggested that the nodal degree of the networks of both
groups exhibit an exponentially truncated power law. In addition, the
old group had significantly more connections and higher clustering
coefficients. In respect to these results, of particular interest to us was
how the arrangement of connections in functional brain networks
altered during normal aging to lead to such changes. More specifically,
we tested the hypothesis that old adults recruit additional connections
to generate a more segregated brain network and maintain nodal
degree distribution simultaneously. To investigate this, a data-driven
model was then proposed to simulate the continuous evolution process
of functional brain networks from the young to the middle-aged to the

old networks. Finally, we tested the model's capacity to emulate the
alterations of topological properties observed in real data. This
comparison demonstrates that our model captures the dynamic
topological alterations of functional brain networks during normal
aging. As far as we know, this is the first study to investigate the
alterations of topological organization of functional brain network on a
large time scale.

2. Materials and methods

2.1. Participants

A primary cohort and an independent cohort were included in our
study. The raw scans of both cohorts were obtained from the
International Consortium for Brain Mapping (ICBM) dataset, which
is the largest sub-dataset of subjects of all age stages in the 1000
Functional Connectomes Project. To avoid the complications of differ-
ent scan parameters, the raw scans from other sub-datasets in the 1000
Functional Connectomes Project were excluded in our study. We
divided the participants in the ICBM dataset into three age groups
and guaranteed a comparable number of participants in each
group. Thus, those who were under 30, between 30 and 55, and
beyond 55 years of age comprised the young, middle-aged, and old
groups, respectively. The actual age distributions for both the primary
and independent cohorts are included as Supplementary materials
(Fig. S1).

According to the above criteria, the primary cohort consisted of 12
young adults (young group, 7 males, mean age: 22.8 years, range: 19–
30 years), 12 middle-aged adults (middle-aged group, 7 males, mean
age: 43.7 years, range: 32–51 years), and 12 old adults (old group, 6
males, mean age: 63.3 years, range: 56–79). The independent cohort
consisted of 9 young adults (young group, 2 males, mean age: 22.6
years, range: 19–27), 9 middle-aged adults (middle-aged group, 7
males, mean age: 44.9 years, range: 35–54), and 9 old adults (old
group, 4 males, mean age: 64.4 years, range: 56–73), which was
applied to validate the involvement model. In each cohort, a significant
difference in age was found among the different groups. No differences
in age were found between corresponding age groups in the two
cohorts. The demographic data are shown in Table 1.

2.2. Preprocessing

Functional MRI images were obtained on a 3T scanner. A total of
133 images were acquired for each subject using the following
parameters: TR=2 s, image matrix 64*64*23. The first five images of
each subject were discarded by ICBM to ensure magnetization equili-
brium.

The raw scans were preprocessed with SPM8 [34]. First, slice
timing was performed to correct all the datasets in the time domain.
Second, realignment was applied to remove the movement artifact in
the BOLD time courses. Subjects whose head translation was more
than 2 mm or whose head rotation exceeded 2° were excluded

Table 1
Demographics of the two cohorts.

Cohort Age phase Sex Mean age
(years)

Range
(years)

P

Primary Young 7m/5f 22.8 19–30
Middle-aged 7m/5f 43.7 32–51 < 10−13

Old 6m/6f 63.3 56–79
Independent Young 2m/7f 22.6 19–27

Middle-aged 7m/2f 44.9 35–54 < 10−9

Old 4m/5f 64.4 56–73

In each cohort, a significant difference in age was found between each of the two groups
via t-tests (primary cohort with P < 10−13; independent cohort with P < 10−9).
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