
Hitchhike: an I/O Scheduler Enabling Writeback for
Small Synchronous Writes

Xing Liu†‡, Song Jiang†§, Yang Wang†, and Chengzhong Xu†§

†Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
‡Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences

§Department of Electrical and Computer Engineering, Wayne State University, USA

{xing.liu, yang.wang1, cz.xu}@siat.ac.cn

Abstract—Small and synchronous writes are pervasive in
various environments and manifest in various levels of software
stack, ranging from device drivers to application software.
Given block interface, these writes can cause serious write
amplifications, excess disk seeks or flash wear, and expensive
flush operations, which, together, can substantially degrade the
overall I/O performance. To address these issues, we present
a novel block I/O scheduler, named Hitchhike, in this paper.
Hitchhike is able to identify small writes, and embed them into
other data blocks through data compression. With Hitchhike, we
can complete a small write and another write in one atomic
block operation, removing write amplification, and the overhead
in excess disk seeks. We implemented Hitchhike based on the
Deadline I/O schedulers in Linux 2.6.32, and evaluated it by
running Filebench benchmark. Our results show that compared
to traditional approaches, Hitchhike can significantly improve the
performance of synchronous small writes.

I. INTRODUCTION

Accesses to small data, or data that is much smaller than a

block, are pervasive and often performance ciritical in modern

computing environments, especially with the incoming era of

big data-based applications where increasingly more and fre-

quent on-disk meta-data is involved. For example, according to

Miller et al. [1], the meta-data of file systems as a whole only

occupies 0.1% to 1% of total storage capacity, but accounts

for about 50% to 80% of the total access volume to the file

systems [2]. On the other hand, for application-level scenarios,

like those in the key-value stores[3] and object-based storage

systems, small writes are also widespread in terms of access

frequency and volume as evidenced by Facebook whose key-

value items smaller than 500 bytes is reported to occupy

approximately 90% capacity of its in-memory cache [4].

Additionally, the generated small-data writes in certain cases

are also synchronous, which means the data written must

be persisted immediately on the disks. This includes updates

of file system meta-data, recording entries of lookup table

for virtual disk devices, and so on. For example, when a

block needs to be written to the disk, some associated bitmap

information is also required to be recorded at the same time

for data integrity. In this scenario, the modification to the

bitmap as small data must follow the write-through policy to

immediately persist on disks.

Currently for efficient access mainstream storage devices,

including hard disks and solid-state disks, enforce an access

interface with respect to block or page, that is much larger than

access unit of byte-addressale memory As such, the mismatch

between the block-based devices and the small data accesses

could cause serious data write amplifications[5][6], excess disk

seeks or flash wear, and expensive flush operations, drastically

degrading the overall I/O performance.

To address this issue, current technologies typically resort to

special hardware supports, such as NVRAM and PCM mem-

ory [7], [8], to enable writeback buffers that could accumulate

multiple small writes in the buffer before committing them

to the disks together in one go. However, these technologies

either suffer from the physical limitations of the new media

or are not effective in addressing the issues caused by the

synchronous small writes, such as write amplification and

write order enforcement. Unlike previous studies, in this paper

we propose Hitchhike, a novel I/O scheduler that can identify

and remove small writes among requests received from the file

system. The essence of Hitchhike is introducing a new data

embedding and hitchhiking technique to remove the overhead

for accommodating small writes. Specifically, when a small

write request is generated, a data block can be identified

and its data is compressed to make room to accommodate

the small data in the block. As such, we can complete a

small write and other write in one atomic block operation,

removing the associated potential write amplification, and

the overhead in disk seek, and flush operations as well. An

illustration of the technology as compared with traditional

methods for small data persistence is shown in Figure 1. As

shown, in the conventional layout, metadata is stored only

at the original metadata block, while in Hitchhike, data in a

block is compressed to make space for temporarily holding

metadata so that two writes (one for data block and the other

for metadata block) can be merged into one, dramatically

improving the small write performance.

By opportunistically employing the data compression tech-

nique to piggyback semantically or temporally related small

data on a data block, Hitchhike represents a major deviation

from conventional use of the compression technique for re-

ducing space and I/O volume. It is a disruptive technolo-

gy to addressing the issue of deteriorating situation on the

conflict between increasing use of synchronous small writes

and persistent use of block storage device in today’s data-

intensive computing platforms. Our prototype-based evaluation

demonstrates that Hitchhike can significantly improve the

2016 7th International Conference on Cloud Computing and Big Data

978-1-5090-3555-7/16 $25.00 © 2016 IEEE

DOI 10.1109/CCBD.2016.55

76

2016 7th International Conference on Cloud Computing and Big Data

978-1-5090-3555-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCBD.2016.55

76

2016 7th International Conference on Cloud Computing and Big Data

978-1-5090-3555-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCBD.2016.55

64

2016 7th International Conference on Cloud Computing and Big Data

978-1-5090-3555-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCBD.2016.55

64

Fig. 1. Illustration of methods for persisting small data.

performance of synchronous small writes.

The reminder of this paper is organized as follows. We

introduce the design of Hitchhike in Section II, and present its

performance evaluation in Section III. After that, we survey

and compare with some related works in Section IV, and

finally conclude the paper in the last section.

II. DESIGN OF HITCHHIKE

As shown in Fig. 2, when the file system writes some

data to a block device, it actually creates a stream of block

requests, which are placed into a dispatch queue and scheduled

by an I/O scheduler [9]. Among these requests, some could

be small updates on existing data blocks, such as updates on

file system’s meta-data blocks and new entries appended at a

log file. Such small writes, as we have shown, can drastically

degrade the I/O performance. Our goal in this design is to

leverage a data embedding and hitchhiking technique to have

a new I/O scheduler, Hitchhike, that can remove the small

writes as separate requests.

To reach our goal, we require a new writeback mechanism

for Hitchhike, allowing it not only to retain the regular

scheduling functionality, but also to have five new capabilities:

1) it can identify small writes hidden in the write requests

by maintaining a write buffer and performing compari-

son of block contents;

2) it can search in the scheduler’s dispatch queue for writes

whose data can be compressed to host the small data;

3) it can adaptively determine whether a small write should

be embedded and where it is embedded to maximize I/O

performance;

4) it can quickly recover lost data after a failure by search-

ing the embedded data; and

5) it does not need to access the embedded data during

system’s normal operations.

The design of Hitchhike centers around these capabilities.

a) Write-back buffer: As apposed to other I/O scheduler-

s, Hitchhike maintains a writeback buffer. Any write request

submitted from generic block layer to I/O scheduler will be

first inserted or merged into the scheduler’s dispatch queue,

as existing schedulers do. Writeback buffer is responsible for

caching bio, a core data structure of the write request and

describes the I/O block device operation.

To find a bio in writeback buffer efficiently, the writeback

buffer is organized as a lookup tree, which is a red-black
tree[10] with bios being linked according to their sector orders.

The lookup tree is used to sort and dispatch the requests in

Generic Block Layer

Bio Bio Bio

Bio Bio

Bio

Bio Bio

…… Bio Bio

Bio

Bio Bio Bio

Merging and Sorting Write back buffer

Hitchhike

XOR

Small write identification

Disk

Block Device Driver

request request request

request request
1010 11

Bio A’

Bio A

Diff11

request

1010 00

Fig. 2. Hitchhike I/O architecture in Linux.

the Deadline I/O scheduler[11]. Additionally, to maintain the

writeback buffer, an LRU-based replacement algorithm is used

to decide which bio should be evicted when the buffer is full.

Hitchhike keeps track of the timing when a bio is used as

its timestamp, and separates all bios cached in the writeback
buffer into two lists called active list and inactive list, where

the former links those bios that have been accessed written,

while the latter tends to include the bios that have not received

writes recently. The bio in inactive list will be firstly evicted

to make room for new bio when the writeback buffer is full.

b) Small write identification: When a write request con-

taining one or more bioes is submitted to the I/O scheduler,

Hitchhike will iterate the bios. At each iteration, it will search

the lookup tree according to the disk address of one bio. Let

us denote the bio as A. If a bio with the same disk address

(bio A’) as A has existed in the writeback buffer, a diff
between the data of A and A’ is computed using Exclusive
OR (XOR). Then, the diff will be compressed by Extremely
Fast Compression algorithm (LZ4), which is a fast lossless

data compression algorithm. Besides, the compressed diff will

be marked with a timestamp and the disk address of bio A.

This timestamp is useful if a block has multiple diffs.

A correct order is required during reconstruction of the

block should it be lost after a system failure. After calculated

the diff, bio A will be written into the writeback buffer and

replace bio A’ for computing future diffs. The compressed

diff is used to determine whether bio A can be considered

as a small write. For example, when a program continuously

appends small new entries at the end of a log file in a

synchronous fashion, many small diffs (or small writes) can

be detected on the last bio of the file. When there is a write

request ready to be dispatched to the device, Hitchhike will

determine whether there is a diff. If yes, the bio of the write

request will also be compressed to make the room. If the room

is sufficiently large, a compressed diff will be embedded to

the room.

c) Data persistence: For write requests, Hitchhike uses

two modes to persist data on the disk. One is the traditional

full-block mode in which the whole block of data is written

to the block’s on-disk address. The other is the partial-block

mode in which only diff data is persisted in host blocks.

77776565

Download	English	Version:

https://daneshyari.com/en/article/4948342

Download	Persian	Version:

https://daneshyari.com/article/4948342

Daneshyari.com

https://daneshyari.com/en/article/4948342
https://daneshyari.com/article/4948342
https://daneshyari.com/

