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a b s t r a c t

Nonlinear dimensionality reduction (DR) algorithms can reveal the intrinsic characteristic of the high
dimensional data in a succinct way. However, most of these methods suffer from two problems. First, the
incremental dimensionality reduction problem, which means the algorithms cannot compute the em-
bedding of new added data incrementally. Second, the high dimensional data reconstruction problem,
which means the algorithms cannot recover the original high dimensional data from the embeddings.
Both problems limit the application of the existing DR algorithms. In this paper, a dictionary-based al-
gorithm for manifold learning is proposed to address the problems of incremental dimensionality re-
duction and high dimensional data reconstruction. In this algorithm, two dictionaries are trained. One is
for the manifold in the high dimensional space and the other one is for the embeddings which can be
computed by any existing DR method in the low dimensional space. When new data is added, di-
mensionality reduction and data reconstruction can just be conducted by coding this input data over one
dictionary, and then use this code to recover the output data via the other dictionary. The proposed
algorithm provides a general framework for manifold learning. It can be integrated into many existing DR
algorithms to make them feasible to both incremental dimensionality reduction and high dimensional
data reconstruction. The algorithm is efficient due to the closed-form solution for sparse coding and
dictionary updating. Furthermore, the proposed algorithm is space-saving because it only needs to store
two dictionaries instead of the whole training samples. Experiments conducted on synthetic datasets and
real world datasets show that, no matter for incremental dimensionality reduction or high dimensional
data reconstruction, the proposed algorithm is accurate and efficient.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Manifold learning has been researched intensively in recent
years. It can reveal the intrinsic characteristic of the high dimen-
sional data in a succinct way. The objective of Manifold learning is
to find a description of low-dimensional structure of an unknown
low dimensional manifold embedded in high dimensional ambient
Euclidean space [1]. In general, manifold learning can be classified
into two categories. One category is Manifold Approximation. The
main idea of these Manifold Approximation method is to decom-
pose the data manifold into small regions, each region is piecewise
approximated by some geometrical structure, such as simplicial
complex [1], k-means and k flats [2], etc. However, these Manifold

Approximation methods do not find a low-dimensional para-
meterization on the Data Manifold and such parameterization is
usually required in the Machine Learning/Data Mining tasks
dealing with high-dimensional data. Another approach in mani-
fold learning is to extract a low-dimensional structure from high
dimensional data, which can be viewed as the problem of finding
the mapping from the high dimensional data to its embedding.
From this perspective, the manifold learning task involves two
aspects: dimensionality reduction and high dimensional data re-
construction. Dimensionality reduction is to find the low dimen-
sional embedding of the high dimensional data. High dimensional
data reconstruction is to recover the high dimensional data from
the low dimensional embedding. They are inverse problem to each
other. In the past decades, many dimensionality reduction (DR)
algorithms have been proposed, including linear dimensionality
reduction (LDR) algorithms and nonlinear dimensionality reduc-
tion (NLDR) algorithms [3]. The typical linear methods are PCA [4–
6] and MDS [7,8]. PCA computes the embedding by projecting the
data to new axes on which the projected data has the maximal
variances. MDS computes the low dimensional embedding by
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preserving the inner product for each pair of points. However, LDR
cannot deal with the curve manifold. In such case, we need to use
NLDR. As for NLDR, two pioneer works are ISOMAP [9] and LLE
[10]. ISOMAP captures the global geometric structure by comput-
ing the geodesic distance for each pair of points on the manifold
and then applies MDS to find the low dimensional embedding. LLE
constructs a local geometric structure that is invariant to transla-
tion, scaling and orthogonal transformation for each point on the
manifold, and computes the embedding by preserving these local
geometric structures. The following research works on nonlinear
dimensionality reduction include LTSA [11], HLLE [12], LE [13,14],
LPP [15], MVU [16], LLC [17], MLE [18] and many other algorithms
[19–23]. Though many NLDR algorithms have been proposed, most
of them suffer from two problems. One is that many of them have
complexity as ( )O N2 or even ( )O N3 , where N is the number of
samples. This high computational cost makes it difficult to deal
with the large-scale task in the real world. The other one is that
most of these algorithms cannot perform dimensionality reduction
in an incremental way. This means when a new data point is ad-
ded, to find its embedding, we have to use the whole updated
dataset to compute all the embedding again in a batch way, which
is time consuming. To overcome this problem, the incremental
algorithms for ISOMAP, LLE, LTSA, LE and HLLE have been proposed
in recent years [24–28]. Though these methods can reduce the
computational complexity, they still need to compute all the em-
bedding again when a new data point is given. Furthermore, these
incremental algorithms are closely related to the corresponding
DR algorithms, which means that the incremental algorithm of
one DR algorithm cannot be applied to other DR algorithms. The
generalization is limited. Therefore, it is meaningful to develop a
general algorithm that can be integrated into the existing DR al-
gorithms to make them gain the ability to perform incremental
dimensionality reduction and deal with large scale problem.

While dimensionality reduction problem has been researched
intensively, its inverse problem (i.e. high dimensional data re-
construction) has not been well studied. Most existing DR algo-
rithms are only interested in how to reduce the dimensionality of
the high dimensional data but seldom involve with how to recover
the high dimensional data from the embedding. In some applica-
tions, data reconstruction is also useful. As we will show in the
following experiments, the image decompression, expression
synthesis and pose synthesis can be all converted to the data re-
construction problem. Though some of the DR algorithms provide
reconstruction algorithms, such as LTSA, LLC and MLE, the re-
construction algorithms are also close related to the DR algo-
rithms. In other words, the reconstruction algorithm for one DR
algorithm is not applicable to the other DR algorithms. Therefore,
it is useful to develop a general data reconstruction algorithm that
can be integrated into the existing DR algorithms to make them
have the ability to perform data reconstruction.

To solve these problems mentioned above, this paper proposes
a novel and practical dictionary learning-based algorithm that can
be used for both dimensionality reduction and high dimensional
data reconstruction. Dictionary learning has been widely studied
and proven to be an effective method in image processing and
pattern classification [29–34]. In the past few years, many dic-
tionary learning algorithms have been proposed for different
purposes [35–38]. However, its application in manifold learning is
seldom reported. Though recently some researchers have pro-
posed a dictionary-based algorithm to perform NLDR [39], they
also do not consider the problem of original high dimensional data
reconstruction. In this paper, we show that the manifold learning
problem can be converted to the dictionary learning problem. In
the proposed algorithm, we train two dictionaries. One is for the
manifold in the high dimensional space and the other is for
the embedding in the low dimensional space. With these two

dictionaries, the high dimensional data and its embedding can be
linked by the shared code on these two dictionaries. For a new
input sample, we compute its coding over one dictionary, and then
use this coding to compute the output via the other dictionary.
Experiments show that our algorithm has the following four ad-
vantages: first, since the coding has an analytic solution, di-
mensionality reduction can be performed efficiently, and therefore
the proposed algorithm can be used in large-scale problem. Sec-
ond, the proposed algorithm can be integrated into many DR al-
gorithms to make them have the extra ability to perform incre-
mental dimensionality reduction. Third, the proposed algorithm
presents a general method for high dimensional data reconstruc-
tion. It can be integrated into many existing DR algorithms to
make them have the ability to perform high dimensional data
reconstruction. Fourth, the proposed algorithm has low space
complexity. No matter for dimensionality reduction or data re-
construction, what we need to store are two dictionaries, which
need much less storage space than the training samples do.

The rest of the paper is organized as follows: In Section 2, a
simple example is presented to illustrate the motivation of our
algorithm. In Section 3, the details of our dictionary-based algo-
rithm are given. In Section 4, experiments on synthetic datasets
and real world datasets are conducted to evaluate the performance
of the proposed algorithm. Finally, in Section 5, some issues re-
lated to the proposed algorithm are discussed.

2. Motivation

Before we give the details of our algorithm, we first use a
simple example to illustrate the idea of our algorithm. In this ex-
ample, the high dimensional data are sampled from the Swiss-roll.
Swiss-roll is a famous dataset in manifold learning. It resides in the
three-dimensional space, but its intrinsic dimensionality is two.
The blue points in Fig. 1(a) are the samples randomly drawn from
Swiss-roll, and the blue points in Fig. 1(b) are the corresponding
embeddings of these samples. Our algorithm is motivated by LLE
[10]. Indeed, many general techniques for non-linear dimension-
ality reduction have been developed that rely on the manifold
hypothesis which states that the high dimensional data manifold
lies on or near a smooth non-linear manifold of lower di-
mensionality. Under the manifold assumption, previous studies
focus on using differential operators to construct a regularization
functional on the manifold. These methods can be roughly classi-
fied into three categories: Laplacian regularization, Hessian reg-
ularization [40,41], and parallel field regularization [42]. LLE [10]
can be viewed as Laplacian operator based methods which mainly
consider the local neighborhood structure of the manifold, which
use the graph Laplacian to measure the smoothness of the learned
function on the manifold. In LLE, the high dimensional data point
xi is first approximated by the linear combination of its nearest
neighbors. That is ≈ ∑ =x a xi j

K
j ij1 , where = …x j K, 1, ,ij are the K

nearest neighbors of xi and = …a j K, 1, ,j are the combination

coefficients satisfying ∑ == a 1j
K

j1 . LLE first computes the optimal aj

by minimizing ∥ − ∑ ∥=x a xi j
K

j ij1
2 with regard to aj, and then keeps

aj unchanged to minimize ∥ − ∑ ∥=y a yi j
K

j ij1
2 with regard to y and

yij. The optimal y and yij are the embedding of x and xij, respec-
tively. The basic idea of LLE is that, in a small neighborhood of xi,
the optimal combination coefficients = …a j K, 1, , ,j for

∥ − ∑ ∥=x a xi j
K

j ij1
2 are invariant to translation, scaling and rotation

of the data, and therefore the combination coefficients for yi are
also the same as xi's. It motivates us that the combination coeffi-
cients can be used as a link between the high dimensional data
and their embedding. Based on this observation, we propose a
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