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a b s t r a c t

Subpixel hyperspectral detection is a kind of method which tries to locate targets in a hyperspectral
image when the spectrum of the targets is given. Due to its subpixel nature, targets are often smaller
than one pixel, which increases the difficulty of detection. Many algorithms have been proposed to tackle
this problem, most of which model the noise in all spatial points of hyperspectral image by multivariate
normal distribution. However, this model alone may not be an appropriate description of the noise
distribution in hyperspectral image. After carefully studying the distribution of hyperspectral image, it is
concluded that the gradient of noise also obeys normal distribution. In this paper two detectors are
proposed: mixture gradient structured detector (MGSD) and mixture gradient unstructured detector
(MGUD). These detectors are based on a new model which takes advantage of the distribution of the
gradient of the noise. This makes the detectors more accordant with the practical situation. To evaluate
the performance of the proposed detectors, three different data sets, including one synthesized data set
and two real-world data sets, are used in the experiments. Results show that the proposed detectors have
better performance than current subpixel detectors.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the development of remote sensing and pattern re-
cognition [1–4,41,42], target detection has aroused more and more
concerns [5–7] in hyperspectral image. Hyperspectral target de-
tection [8–10] is the process of locating certain ground material in
a hyperspectral image, when spectral signature of the material is
known in advance. Hyperspectral target detection has been widely
used for both military and civilian purposes [11,12]. For instance, it
can be used to monitor water quality, forest fire danger, land-
utilized condition and enemy military dispositions, which makes it
an important research area.

In hyperspectral imaging system, the spectrum can be divided
into many more narrow and contiguous bands with a wide range
of wavelengths. Owning to the high wavelength resolution, a hy-
perspectral image can be regarded as a set of images. Each image
covers a narrow wavelength range. This makes hyperspectral im-
age a three-dimensional data cube with two spatial dimensions
and a spectral dimension. Different bands of a pixel can form a
continuous spectrum, and each ground material often has its

unique spectral signatures, which makes it possible to identify
targets. On the other hand, the spatial resolution of hyperspectral
images is limited [43–45]. Sometimes a pixel may consist of more
than one material, and target is mixed with background, which is
called subpixel target. Subpixel target is difficult to detect, because
the spectral spectrum of the mixed pixel is often different from the
target spectrum.

A number of algorithms [46–49] have been proposed to solve
the subpixel detection problem. One kind of algorithm tried to find
an optimal projection vector so that background signatures are
suppressed while target signatures are maintained after the pro-
jection. In this case, targets and background can be separated.
Representatives of this kind of algorithm are orthogonal subspace
projection (OSP) [13], kernel orthogonal subspace projection (KOSP)
[14], constrained energy minimization (CEM) [15], target-constrained
interference-minimized filter (TCIMF) [16], kernel-based TCIMF
(KTCIMF) [17], etc. In these algorithms, the noise is assumed to be
a zero-mean multivariate normal distribution [50,51].

Another kind of algorithm is based on hypothesis testing [18–
21]. In these algorithms, firstly a couple of hypotheses including
null hypothesis and alternative hypothesis are formulated. Then a
detector is designed to judge whether the pixel in the image be-
longs to the null hypothesis or the alternative hypothesis. De-
pending on the model used to describe background signature,
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hypothesis testing based algorithms can be divided into two
classes: structured detector and unstructured detector. One ex-
ample of structured detector is adaptive matched subspace detector
(AMSD) [22]. The AMSD used linear mixing model to represent
background. In this case, each pixel can be represented as the
product of background endmembers and their corresponding
abundance. Although AMSD can correctly find targets from the
image in most cases, it has some drawbacks. For AMSD, end-
members are the eigenvectors of the data correlation matrix, and
the sum-to-one and nonnegative constraint are not satisfied,
which will result in the loss of physical meaning. Adaptive cosine/
coherent estimate (ACE) [20] is another example of statistical hy-
pothesis testing based algorithms. Compared with AMSD, ACE
assumed that background signature consists of only noise which
obeys multivariate normal distribution. This makes ACE a very fast
algorithm since it does not extract endmembers from background.
However, recent study has shown that multivariate normal dis-
tribution cannot correctly model the background in hyperspectral
imaging [23].

To overcome the shortage of hypothesis testing based algo-
rithms, two hybrid detectors for subpixel targets, including hybrid
structured detector (HSD) and hybrid unstructured detector (HUD),
have been proposed [24] in recent years. These algorithms use
both physics and statistics to model the background, and targets
are then detected using statistical hypothesis. By doing so, physical
meaning is brought into the original background model, and ex-
periments also show that hybrid detectors perform better than
typical hypothesis testing based algorithms.

In subpixel detection, one of the key factors that alter the target
observations is the estimation of the noise statistics [25,22,26]. All
the aforementioned algorithms model the noise as a set of in-
dependent and identically distributed (i.i.d.) noise random variables
for all spatial points, each of which follows a multivariate normal
distribution or multivariate Gaussian distribution. However, this
model is weak [27] because it does not capture an important
property of image noise, which is that image noise exhibits spatial
randomness. Recent study [27] has shown an interesting ob-
servation that normal distribution alone may not be an appro-
priate description of the noise in images, the gradient of noise
should also obey normal distribution. This observation can be
easily explained that the i.i.d. property makes the gradient of noise
random variables also follow multivariate Gaussian distributions
with different standard deviations.1

To further validate this observation, a simulation experiment is
performed on hyperspectral image. In Fig. 1(a), 10 dB Gaussian
noise is added to the original hyperspectral image, and distribu-
tions of noise and gradient of noise are shown in Fig. 1(b). From
Fig. 1 it can be concluded that the gradient of the noise within a
pixel among different bands also follows Gaussian distribution.
The distribution of noise in the hyperspectral image needs to be
exploited in order to better detect targets from backgrounds.
However, to our knowledge in current target-detection algorithms,
the distribution of the gradient of noise has never been studied.

In this paper, a stronger model of noise is proposed to regard
the distribution of noise and its gradient. Based on the new model,
we then follow the work of hybrid detectors, and propose two new
hybrid detectors, mixture gradient structured detector (MGSD) and
mixture gradient unstructured detector (MGUD), which make full
use of the gradient distribution of the noise.

The rest of the paper is organized as follows. Section 2 in-
troduces fully constrained least squares (FCLS), HSD and HUD which
are related to the proposed algorithm. Section 3 describes the two

proposed detectors MGSD and MGUD. Performance comparisons
of different algorithms are given in Section 4, and finally conclu-
sion is given in Section 5.

2. Related work

This section introduces linear mixture model (LMM), fully con-
strained least squares (FCLS), and reviews the HSD and HUD de-
tection algorithms, which are related to the proposed algorithm.
Both LMM and FCLS are important parts of HSD and HUD. HSD is a
structured detector which takes advantage of both FCLS and
AMSD, while HUD is an unstructured detector which is based on
FCLS and ACE.

2.1. Linear mixture model (LMM)

In order to tackle the subpixel detection problem, a model is
needed to describe the inner structure of pixels. The most com-
monly used model is linear mixture model (LMM) [28,29,52,53].
This model assumes that each pixel is a linear combination of
different elements (called endmember), and each element has its
own weights (called abundance). The model can be represented as

α= + ( )x E n, 1

where x is a ×l 1 vector that represents the spectrum of the cur-
rent pixel. l is the number of bands. E is a ×l p matrix, where the
ith column represents the spectrum of the ith endmember, and the
jth row represents the spectrum of the jth band. α α α α= [ … ], , , p
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is a ×p 1 vector representing the abundance of different end-
members. To enhance the physical meaning of LMM, two con-
straints are added to the model:
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The former is called abundance sum-to-one constraint (ASC) and
the latter is called abundance nonnegative constraint (ANC). By
using those two constraints, the true abundance can be extracted
from mixed pixels. The estimated abundance is helpful for ana-
lyzing the distribution of different materials in the scene.

2.2. Fully constrained least squares (FCLS)

FCLS is an algorithm which is used to estimate the abundance
of endmembers in the image. The algorithm begins with ANC, and
tries to minimize the least squares error while guaranteeing that
the abundance is nonnegative. This can be expressed as:

α α α( − ) ( − ) ≥ ∀ ( )α
x E x E imin , 0 . 3

T
i

Eq. (3) is a constrained optimization problem, which can be solved
by using Lagrange multipliers:

α λ^ = ( ) − ( ) ( )− −E E E x E E , 4T T T1 1

where

λ α= ( − ^) ( )E x E . 5T

To solve Eqs. (4) and (5), an active set based algorithm is adopted
to ensure that the solution meets the Karush–Kuhn–Tucker con-
ditions. The iterating step begins with an unconstrained least
squares estimation of α. Then two index sets, including passive set
P and active set R, are built. Indices (Lagrange multipliers) corre-
sponding to the positive abundance values are put in P, while the
remaining indices corresponding to the negative and zero

1 If n1 and n2 are normally distributed and independent, then their difference
−n n1 2 is also distributed normally.
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