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a b s t r a c t

The leader-following consensus problem of fractional-order multi-agent discrete-time systems is con-
sidered. In the system, interactions between opinions are defined like in the classical Hegselmann–
Krause models but the memory is included by taking the fractional-order discrete-time operator on the
left-hand side of the nonlinear system. In the paper we investigate various models for the dynamics of
discrete-time fractional order opinions by analytical methods as well as by computer simulations.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Speaking about consensus we need to imagine a group of in-
dividuals/experts who need to act together as a team or committee.
Each of the experts has his own opinion but they should be willing
to work together and to revise or exchange the opinion. The inter-
actions between agents are usually described by interconnection
topology of the system. In the literature, consensus denotes the
agreement of a group faced with decision-making situations. Con-
sensus has an old history, see for instance [1–5], whereas to our
knowledge the models are linear and hence they are comparatively
simple. This means in particular that the analysis needed can be
carried out by linear techniques such as matrix theory, Markov
chains and graph theory. As stated in [1] for a group behaviour the
decision makers are more confident by sharing information with
each other or consulting more than one expert. There has been an
increasing interest in recent years in the analysis of multi-agent
systems where agents interact according to some local rules. Each of
the experts has his own opinion that could be changed by the in-
fluence of some interaction of its neighbours. The first nonlinear
model was formulated and analysed in [6,7], where the general-
isation of linear and inhomogeneous models into a state dependent

one is studied. An extensive analysis of nonlinear models in-
troduced by Krause in [7] or sometimes referred to as the He-
gelsmann–Krause model was given in [8,9]. In papers [8,9] an ex-
tensive exploration of the nonlinear model with bounded con-
fidence by a series of computer simulation is presented. In the past
decades, there has been a great interest in distributed multi-agent
coordination research due to their broad applications in the control
community. The objective is to reach an agreement on information
states, including positions, velocities, and attitudes, via local inter-
action. In our opinion there is other group of scientists who use
controls to define the consensus for the systems. For most of the
results the authors use continuous- or discrete-time dynamics with
integer-order, see for instance [10–12]. In [10,11] the authors study
the group consensus problems of heterogeneous multi-agent sys-
tems without and with time delays, respectively. The study of the
leader-following consensus for multi-agent systems with nonlinear
dynamics is presented in [12].

In nature many phenomena cannot be explained in the frame-
work of integer-order dynamics, for example, the synchronised mo-
tion of agents in fractional circumstances, such as macromolecule
fluids and porous media. In [13–15] the authors show that in order to
demonstrate the stress–strain relationship one can use the fractional-
order dynamics rather than integer-order dynamics. In addition,
many other phenomena can naturally be explained by the co-
ordinated behaviour of agents with fractional-order dynamics, see for
instance [16–19], that are devoted for a class of fractional-order
multi-agent systems. Moreover, fractional-order systems provide an
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excellent instrument for the description of memory. In the paper
mentioned above there are considered particular observed consensus
protocol with control, where in the definition of the consensus the
controls are used. In our paper the right side of the model is like in
the classical Hegselmann–Krause models, see [7–9], i.e. we study the
nonlinear fractional order models with bounded confidence. We
would like to stress that in our model we do not add any controls and
in our case it is not possible to give the method of a construction of
the controls in order to guarantee the consensus of the system like in
[11,16–19]. In fact it is not easy to get the rigorous analytical results.
For this reason we carry out the analysis of the presented nonlinear
fractional order models to a large extent by computer simulations
using “Maple”. However we were able to prove some analytical re-
sults for some considered models. When we analyse the differences
between opinions, we include an investigation of stability via
-transform of the system. Some additional results about stability of

linear fractional systems can be found for example in [20]. However,
in the paper we study consensus based on interactions between
opinions taking into account memory inside them. In our opinion the
memory is one of the most important factors that impacts on ele-
ments of groups behaviour. Since the definition of fractional opera-
tors take into account the “memory”, i.e. the previous values of the
function, we decided to include the memory by implementation of
fractional operator instead of classical one.

In our paper, we come back to interactions between opinions
defined like in Hegselmann–Krause models but with included
memory by fractional-order operator on the left side. We use the
Grünwald–Letnikov-type difference operator. As in that way our
systems are positive, we start with positive initial opinions, then
the trajectories are growing very fast. It decides about situation
that to define a consensus by the classical way is no longer pos-
sible. Hence we decided to state new definition as tendency be-
tween trajectories, where those agents with the highest opinions
inside the groups are called leaders. Such a type of consensus is
called leader-following consensus. For the simplest case of just
two agents it is not difficult to give a complete analysis of the
dynamics. For an arbitrary n, however, the mathematical analysis
of the fractional dynamics is rather difficult. For that reason we
present in the paper an extensive analysis of this model for higher
values of n agents by computer simulation.

2. Preliminaries

Let ∈c and  ≔{ + + …}c c c, 1, 2,c . Define the following
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However during computer calculations it is inadvisable to use the
gamma function for computing the general binomial as the values
of function Γ grow very fast. Therefore the best way is the pos-
sibility of using the recurrence formula for binomial coefficients.
Note that α( )ak can be also defined in a recurrent way by
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Relation (2) follows from the simple recalculations in the pre-
sentation with the above formula with function Γ. Then we have
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Proposition 1. Let α ∈ ( )0, 1 . Then the sequence
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Hence if for all ∈k 1 holds that >α(− )a 0k , then the difference
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Using Proposition 2 we can easily deduce that sequence
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take α ∈ ( )0, 1 . Then using property of gamma function we get
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where ∈z denotes a complex number for which this series
converges absolutely. The −transform can be extended to vector
valued sequences in the componentwise manner. Note that since
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