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a b s t r a c t

In this paper, we propose a robust method for coherent vector field learning with outliers (mismatches)
using manifold regularization, called manifold regularized coherent vector field (MRCVF). The method
could remove outliers from inliers (correct matches) and learn coherent vector fields fitting for the inliers
with graph Laplacian constraint. In the proposed method, we first formulate the point matching problem
as learning a corresponding vector field based on a mixture model (MM). Manifold regularization term is
added to preserve the intrinsic geometry of the mapped point set of vector fields. More specially, the
optimal mapping function is obtained by solving a weighted Laplacian regularized least squares (LapRLS)
in a reproducing kernel Hilbert space (RKHS) with a matrix-valued kernel. Moreover, we use the Ex-
pectation Maximization (EM) optimization algorithm to update the unknown parameters in each
iteration. The experimental results on the synthetic data set, real image data sets, and non-rigid images
quantitatively demonstrate that our proposed method is robust to outliers, and it outperforms several
state-of-the-art methods in most scenarios.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Point matching problem is a fundamental problem and plays a
significant role in computer vision, signal processing, and pattern
recognition [1–6], and it frequently arises in many applications,
such as image registration, medical imaging, 3D reconstruction,
image stitching, and object recognition.

The goal of the matching task is to distinguish inliers from outliers
between given two point sets where each point set is captured from
an image by a certain local feature extractor (e.g., SIFT [7], SURF [8,9]).
However, the matching problem has several challenges: (1) initial
correspondence set is usually contaminated by outliers (false matches
or mismatches) after matching feature point pairs using similarity
based method such as Best Bin First (BBF) [7], (2) the matching pro-
blem is an ill-posed problem and needs a constraint to preserve the
intrinsic geometry of point set, (3) the transformation between point
sets can be linear (e.g., translation, similarity, affine) or non-linear (e.g.,
quadratic, non-rigid), note that the latter one is hard to solve.

Many algorithms exist for point matching and try to address
the above challenges. The most popular algorithm in the field is

RANdom SAmple Consensus (RANSAC) [10], it repeatedly gen-
erates a hypothetical model from a small correspondence set, and
then verifies each model on the whole set to select the best one.
However, limitation occurs when facing non-linear transforma-
tions. To overcome those limitations, many progressive RANSAC
algorithms have been developed, such as maximum likelihood
estimation sample consensus (MLESAC) [11], progressive sample
consensus (PROSAC) [12], non-rigid RANSAC [13]. It is worth not-
ing that Sunglok et al. [14] has evaluated the performance of
RANSAC algorithm family.

From the iterative point matching based methods [15,16], cor-
rect matches can be identified. Further, from the perspective of
motion coherence (i.e., spatial coherence), the floating point set is
moved to the target point set as close as possible by a set of
smooth mapping functions. Some state-of-the-art methods are
based on this motion field coherence theory (MCT) [17], such as
coherent point drift (CPD) [18], Gaussian mixture model and thin-
plate spline (GMM–TPS) [19], vector field consensus (VFC)
[20,3,21], mixture of asymmetric Gaussian (MoAG) model [22,23],
robust L2E estimation [24], and context-aware Gaussian fields
criterion (CA-LapGF) [25]. More specifically, the non-rigid trans-
formation is parameterized by radial basis function (RBF), such as
thin-plate spline (TPS), and Gaussian RBF (GRBF). Finally, outliers
would be rejected as well as possible after learning a coherent
motion field from point set pairs.
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Moreover, a topological clustering algorithm [26] was proposed
and used to filter out mismatches. With this method, outliers can
be identified and rejected by checking the consistency of topolo-
gical relationships between matched regions in the image pair. The
support vector machine regression method was used to identify
the point correspondences and remove outliers (ICF) [27].

In this paper, we focus on identifying and removing outliers
from point set matching as well as possible based on vector field
learning (VFL). More specially, we first formulate the point
matching as learning a coherent vector field mapping function,
and then use the manifold regularization to constrain the vector
field with preserving the intrinsic geometry. Our contribution in
this paper includes the following two aspects. (1) We introduce
the well-known manifold regularization framework for learning
coherent vector fields with outliers. (2) Based on the MCT point
matching model, we propose manifold regularized coherent vector
field learning method (namely manifold regularized coherent
vector field, MRCVF) for robust point matching, which can improve
the matching accuracy compared to state-of-the-art methods. It is
worth noting that our MRCVF is based on VFL method such as VFC
[20], and the motivation derives from (1) the initial correspon-
dence set contaminated by outliers, and (2) the natural property of
manifold regularization.

The remainder of the paper is organized as follows. In Section 2
we first present the coherent vector field learning algorithm more
formally and profoundly using manifold regularization constraint.
In Section 3 we evaluate the proposed algorithm by some ex-
periments on the public data set. In Section 4 we give a brief
discussion and conclusion.

2. Methods

2.1. Vector field learning

Let us recall the familiar vector field learning briefly. Let in-
put point set be X and output point set be Y , then given a finite
training set of labeled correspondences with some unknown
outliers = {( )} =S x y,i i i

N
1. We define a mapping function f from a

structured input space ∈ A to a structured output space
∈ B from labeled examples S, then our task is to learn
↦f : , i.e., = ( )y f xi i and identify the inliers (namely remove

outliers), where ∈f , and is a reproducing kernel Hilbert
space. Let × ↦k: be a standard Mercer kernel with an as-
sociated RKHS family of functions ↦:K with the corre-
sponding norm ∥·∥ . Then the optimal mapping function f can be
solved by minimizing the following Tikhonov regularized [28]
optimization problem,
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where the solution of f can be expressed by the classical Re-
presenter theorem [29] with finite dimensional coefficients
α α α= [ … ], , N

T
1 , i.e., α( ) = ∑ ( )⋆

=f x k x x,i
N

i i1 with a linear system
αλ( + ) =K NI Y , where K is a positive semi-definite Gram matrix

with ( ) = ( )K i j k x x, ,i j , λ > 01 is a trade-off parameter, I denotes the
identity matrix.

2.2. Manifold regularized coherent vector field

In Manifold Regularization framework [30,31], an additional
penalty term ‖ ‖f 2 is used to penalize f along a low dimensional
manifold. Thus we can learn coherent vector fields under
manifold regularization by minimizing the following extension

of Eq. (1),
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where λ1 controls the complexity of the mapping function in the
ambient space while λ2 controls the complexity of the mapping
function in the intrinsic geometry.

More specially, Let W be a nearest-neighbor graph which
serves as a discrete probe for the geometric structure of the data,
then the graph Laplacian = −L D W provides a natural intrinsic
measure for simplicity of data-dependent smoothness,
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where = [ ( ) … ( )]f x f xf , , N1 , note that D is a diagonal matrix with

elements = ∑ =D Wii j
N

ij1 . The solution of coherent vector fields will

be discussed later.

2.3. Learning coherent vector fields

Motivated by the sample consensus, the inliers can be fitted by
a coherent vector field mapping. Thus we assume that the error
between Y and ( )f X satisfies the following distributions,
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where the error for inliers satisfies Gaussian distribution with zero
mean and uniform standard deviation s, while the error for out-
liers satisfies a uniform distribution

u
1 with a positive constant u.

Thus the error between observed input-output pairs is modeled as
a mixture model of the Gaussian and uniform distributions
[11,18,20,32],
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where γ≤ ≤0 1 is a mixing coefficient denoting the percentage of
inliers, θ γ σ= { }f , , 2 is the set of unknown parameters, and D de-
notes the dimension of data.

Moreover, to reduce over-fitting and preserve smoothness
constraint, the prior of the coherent mapping function f under
manifold regularization can be expressed as follows,

( )λ λ( ) ∝ − ‖ ‖ − ‖ ‖ ( )p f f fexp 6I1
2

2
2

According to Bayes' theorem, the posterior distribution θ( | )p S
could be estimated by the given (5) and prior (6),

θ θ( | ) ∝ ( | ) ( ) ( )p S S p f 7

where the likelihood θ θ( | ) = ∏ ( | )=S p Si
N

i1 , and the optimal solu-
tion of θ is to estimate a maximum a posteriori (MAP).

Considering the complete-data with a latent variable zi, where
zi¼0 for outliers, and zi¼1 for inliers, then the objective function
is an upper bound of the negative log-likelihood function of (7),
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