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a b s t r a c t

Devising generative models that allow for inferring low dimensional latent feature representations of
high-dimensional observations is a significant problem in statistical machine learning. Factor analysis
(FA) is a well-established linear latent variable scheme addressing this problem by modeling the cov-
ariances between the elements of multivariate observations under a set of linear assumptions. FA is
closely related to principal components analysis (PCA), and might be considered as a generalization of
both PCA and its probabilistic version, PPCA. Recently, the invention of Gaussian process latent variable
models (GP-LVMs) has given rise to a whole new family of latent variable modeling schemes that gen-
eralize FA under a nonparametric Bayesian inference framework. In this work, we examine generalization
of FA models under a different Bayesian inference perspective. Specifically, we propose a large-margin
formulation of FA under the maximum entropy discrimination (MED) framework. The MED framework
integrates the large-margin principle with Bayesian posterior inference in an elegant and computa-
tionally efficient fashion, allowing to leverage existing high-performance solvers for convex optimization
problems. We devise efficient mean-field inference algorithms for our model, and exhibit its advantages
by evaluating it in a number of diverse application scenarios, dealing with high-dimensional data clas-
sification and reconstruction.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Factor analysis (FA) is a well-established linear latent variable
scheme, modeling the covariances between the elements of mul-
tivariate observations by dividing them into two parts: an un-
observed systematic part, taken as a linear combination of a re-
latively small number of unobserved latent variables called factors,
and an unobserved error part, whose elements are considered as
uncorrelated [1,2]. Factor analysis is closely related to principal
components analysis (PCA) [3], and might be considered as a
generalization of both PCA and its probabilistic version, PPCA [3],
overcoming their drawbacks which namely are (a) PCA does not
correspond to an underlying density function for the data and
(b) both PCA and PPCA assume a uniform variation for the com-
ponents of the feature vectors outside the principal subspace,
which in general is a strong and restrictive assumption.

Recently, a considerable amount of work has been devoted to
the generalization of FA under a nonparametric Bayesian per-
spective. This line of research has been motivated by the seminal
work on Gaussian process latent variable models (GP-LVMs), first
presented in [4]. GP-LVMs can be considered as multiple-output
Gaussian process (GP) regression models where only the output
data are given. The inputs are unobserved and are treated as latent

variables which are optimized in the context of model training.
The adoption of this optimization strategy (rather than the
straightforward solution of performing inference over these latent
variables) is a trick that renders the model tractable; the theore-
tical grounding for this approach is based on the fact that GP-LVM
can be seen as a nonlinear extension of FA and PPCA [4]. Following
the ideas presented in [4], several researchers have since proposed
a variety of extensions to GP-LVM, including adaptations of the
model to allow for modeling data with complex underlying dy-
namics, e.g. sequential data [5,6], and multimodal extensions of
GP-LVMs (e.g., [7]), to name just a few.

In this work, for the first time in the literature, we consider
generalization of FA models under a different Bayesian inference
perspective. Specifically, we propose a generative latent feature
model that leverages the large-margin principle to learn the
function mapping the obtained latent representations to the ori-
ginal (observed) data presented to our model. Introduction of the
large-margin learning principle allows for obtaining a technique
with higher discriminative power, that makes more effective use
of our training data during estimation of the postulated latent data
representations. To introduce the large-margin principle in the
context of our hierarchical Bayesian model, we build upon the
maximum entropy discrimination (MED) framework [8,9].

The MED framework integrates the large-margin principle with
Bayesian posterior inference in an elegant and computationally
efficient fashion, allowing to leverage existing high-performance
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techniques for both hierarchical Bayesian models and convex op-
timization problems. Adoption of the MED framework in the
context of our model yields a mean-field inference algorithm,
which obtains a regularized posterior distribution in a feasible
space defined by a set of expected margin constraints generalized
from the familiar support vector regression (SVR)-style margin
constraints. We dub our approach maximum entropy discrimina-
tion factor analysis (MED-FA).

To examine the effectiveness of our approach, and how it
compares to the existing approaches, we perform a number of
experimental evaluations; we consider application scenarios from
diverse domains, dealing with high-dimensional data classification
and reconstruction. The remainder of this paper is organized as
follows: in the next section, we introduce our proposed approach,
and derive its inference algorithm and its predictive density ex-
pression. Further, we perform our experimental evaluations, and
examine the advantages of our approach over existing alternatives.
Finally, in the concluding section of this paper, we summarize our
results and discuss directions for future research.

2. Proposed approach

Let us consider a dataset = { } =yY d d
D

1 comprising N-dimensional
i.i.d. observations = [ ] ∈=y yd dn n

N N
1 . Let us also assume that these

observations are generated under an FA model of the form
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T
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In the likelihood function (1) of the postulated model, H is the
factor loadings matrix of the postulated model, while

ΨΨ = ([ ] )=diag n n
N

1 is its diagonal noise covariance matrix. On the
other hand, the = [ ] ∈=z zd dm m

M M
1 are M-dimensional latent re-

presentations (factors) of the observed data inferred by our model,
with <M N . As usual in FA, we elect to impose a spherical prior
over the latent factors zd, yielding

( ) = ( ) ( )z z Ip 0, 3d d M

From this starting point, we further stipulate that the postu-
lated linear scheme (1) that connects the obtained latent re-
presentations = { } =zZ d d

D
1 and the observed data = { } =yY d d

D
1 be

subject to the following large-margin constraints:
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Our imposed constraints are inspired from large-margin ap-
proaches, and especially, the literature on MED regression models
[8, Chapter 4], as they are based on maximization of an ex-
pectedmargin, that takes into account the Bayesian inferential
formulation of our model.

Note that, in (4), ε is a precision parameter, functioning similar
to the precision parameter in SVR, and ξ ξ{ }⁎,dn dn d n, are some slack-
variables, used in a way similar to SVR [10]. Note also that our
model postulates soft constraints (by introducing the slack vari-
ables ξ ξ{ }⁎,dn dn d n, ), so as to allow for better handling outliers in the
modeled datasets (which are quite common in real-world appli-
cation scenarios).

Finally, in order to facilitate data-driven selection of the most
appropriate dimensionality M of the latent factor vectors zd, we

resort to a technique widely referred to as automatic relevance
determination (ARD) [11]. The ARD mechanism is implemented by
imposing a hierarchical prior over the factor loadings matrix H to
discourage large values, with the width along each latent dimen-
sion controlled by a Gamma-distributed precision hyperparameter
ϕ ∈ { … }m M, 1, ,m . If one of these precisions ϕm tends to infinity,
then the outgoing weights η ∀ nnm will have to be very close to
zero in order to maintain a high likelihood under this prior. As
such, the model ignores the corresponding (e.g., the mth) direction
in the latent subspace, which is effectively “switched off” of the
model.

On this basis, we impose a hierarchical conjugate prior dis-
tribution over the factor loadings matrix H , as follows: Each row ηn
of the factor loadings matrix H imposed a zero-mean Gaussian
prior with axis-aligned elliptical covariance

η ϕ η ϕ( | ) = ( | ( ) ) ( )−p 0, diag 5n n
1

where ϕ is the precision hyperparameter vector of the prior. In
addition, we postulate

∏ϕ ω ω ϕ ω ω( | ˜ ^ ) = ( | ˜ ^ )
( )=
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6m

M

m0 0
1

0 0

where ω̃0 and ω̂0 are the shape and inverse-scale hyper-hy-
perparameters of the Gamma prior imposed on the precision
vector ϕ.

This concludes the formulation of our MED-FA model.

2.1. Inference algorithm

To perform inference for our model, we adopt the MED in-
ference framework. Specifically, conventional MED inference in
the context of our model comprises solution of the following
minimization problem:

( ) ∑ ∑ϕ ϕ γ ξ ξ( )∥ ( ) + ( + )
( )ϕ ξ ξ Ψ( ) = =

⁎
⁎ H Hq Z p Zmin KL , , , ,
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, , , , ,

1 1

under the constraints (4), where ξ ξ= [ ]dn d n, , ξ ξ= [ ]⁎ ⁎
dn d n, , and γ is a

regularization constant. However, in our work, we elect to opti-
mize a composite objective function that also takes into con-
sideration the expected (negative) log-likelihood of our hier-
archical Bayesian model, which measures the goodness of fit to the
training data, similar to [12]. This way, inference for our model
eventually reduces to solution of the following problem:
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Note that, in the above expressions, all the expectations  [·] are
computed w.r.t. the posterior ϕ( )Hq Z, , .

Our inference algorithm proceeds in an iterative fashion, under
the mean-field principle [13]: on each iteration, we consecutively
minimize (8) over each one of the factors of the sought posterior

ϕ( )Hq Z, , , as well as the noise covariance Ψ, and the slack-vari-
ables ξ ξ⁎, , one at a time, holding the others fixed. It has been
shown that such an iterative consecutive updating procedure is
guaranteed to monotonically optimize the objective function of
our problem [9]. Under this procedure, the posterior over the
(rows of the) factor loadings matrix yields
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