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a  b  s  t  r  a  c  t

In the  real  world,  a computer/communication  system  is usually  modeled  as  a capacitated-flow  network
since  each  transmission  line  (resp.  facility)  denoted  by  an  edge  (resp.  node)  has  multiple  capacities.
System  reliability  is  thus  defined  to be  a probability  that  d  units  of  data  are  transmitted  successfully  from
a source  node  to  a sink  node.  From  the  perspective  of  quality  management,  system  reliability  is  a  critical
performance  indicator  of  the  computer  network.  This  paper  focuses  on maximizing  system  reliability
for  the  computer  network  by finding  the optimal  two-class  allocation  subject  to  a  budget,  in which  the
two-class  allocation  is  to  allocate  exactly  one  transmission  line  (resp.  facility)  to  each  edge  (resp.  node).
In addition,  allocating  transmission  lines  and  facilities  to the computer  network  involves  an  allocation
cost  where  the  cost  for  allocating  a transmission  line  depends  on  its length.  For  solving  the  addressed
problem,  a  genetic  algorithm  based  method  is  proposed,  in which  system  reliability  is evaluated  in  terms
of minimal  paths  and state-space  decomposition.  Several  experimental  results  demonstrate  that  the
proposed  algorithm  can  be executed  in a reasonable  time  and  has better  computational  efficiency  than
several  popular  soft  computing  algorithms.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

With the internet popularization in our modern life,
data and information are usually transmitted through com-
puter/communication systems. Since the quality of data
transmission deeply influences on the effect of organizational
operation, many organizations focus on the issues of system reli-
ability evaluation and improvement to increase the transmission
quality, especially for the issue of system reliability maximization.
A computer system is usually modeled as a network composed
of edges and nodes, in which each edge denotes a transmission
line and each node denotes a facility. Generally, a transmission
line is combined with several physical lines such as fiber cables,
coaxial cables or twisted pairs and a facility is combined with
several devices such as routers, hubs, switches or bridges. Because
each physical line (resp. device) has a capacity and may  fail due
to failure, maintenance, etc., each transmission line (resp. facility)
has multiple states. That is, the computer network is multistate,
and thus is a typical capacitated-flow network [1–8]. System
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reliability is thus defined to be a probability that d units of data
are transmitted successfully from a source node to a sink node,
and is one critical performance indicator of the computer network.
Several studies evaluated system reliability in terms of minimal
paths (MPs) [1,2,4] or minimal cuts (MCs) [1–3] without node
failure. An MP  is a set of edges and nodes whose proper subsets are
no longer paths. Lin evaluated system reliability with node failure
in terms of MPs  [5], and then in terms of MCs  [6].

From the perspective of quality management, system reliability
maximization is a practical topic to discuss. Several studies [9–11]
related to system reliability maximization determined the optimal
network topology for a binary-state computer network. For mul-
tistate computer networks, Levitin and Lisnianski [12] proposed a
technique integrating a universal generating function and genetic
algorithm (GA) to solve a family of system reliability maximiza-
tion problems, such as structure optimization, optimal expansion,
and maintenance optimization. Ramirez-Marquez and Rocco [13]
introduced an evolutionary optimization approach to solve the
stochastic network interdiction problem. The problem considers
the minimization of the transmission cost associated with an inter-
diction strategy such that the maximum flow can be transmitted
between a source node and a sink node under a given reliabil-
ity requirement. Considering that the resources are allocated to
protect the edges under an evenly distributed attack strategy,
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Ramirez-Marquez et al. [14] presented a network optimization
model to maximize the survivability of the network for successfully
transmitting a specific flow from a source node to a sink node.

In addition to these issues, there exists a problem to search for
the optimal component allocation with maximal system reliability
for the computer network with a given network topology. In this
problem, all components are separated to be two  sets which are
a set of Class 1 components (transmission lines) and the other set
of Class 2 components (facilities). In particular, allocating a Class
1 (resp. Class 2) component to an edge (resp. node) involves the
allocation cost, in which the cost for allocating a Class 1 compo-
nent depends on its length. Therefore, this paper devotes to the
System Reliability based Two-Class Allocation problem subject to
a Budget. For the convenience, such a problem is named SR2CAB
problem herein. In this problem, the two-class allocation means
that each Class 1 (resp. Class 2) component can be allocated to at
most one edge (resp. node) and each edge (resp. node) must include
exactly one Class 1 (resp. Class 2) component. With multistate Class
1 and Class 2 components, any computer network under a two-class
allocation is regarded as a capacitated-flow network.

Intuitively, an implicit enumeration method which enumerates
all possible allocations may  be applied to solve the SR2CAB prob-
lem. However, it is time-consuming for larger networks. Instead,
we develop an efficient algorithm based on GA, namely SR2CAB-GA,
to solve the addressed problem. The reason is that GA is a robust
search technology and recently has been validated to be suitable for
the allocation problems [15,16], such as Lin and Yeh [7,8], Lee et al.
[17], Salcedo-Sanz et al. [18], Salcedo-Sanz and Yao [19], Kaminer
and Ben-Asher [20]. In the proposed algorithm, a two-class allo-
cation is represented as a chromosome (a solution), and system
reliability is evaluated in terms of MPs  and state-space decomposi-
tion. Through this algorithm, the optimal two-class allocation with
maximal system reliability can be found in a reasonable time.

The rest of this paper is organized as follows. The assumptions
are shown in Section 2. The problem formulation is discussed in Sec-
tion 3. Section 4 subsequently develops the SR2CAB-GA to solve the
SR2CAB problem. Two numerical examples are adopted to demon-
strate the computational efficiency of the proposed algorithm while
comparing with several soft computing algorithms. Conclusions
are described in Section 6, along with recommendations for future
research.

2. Assumptions

Let (E, N) be a computer network with a source s and a sink
t where E = {ei|1 ≤ i ≤ n} denotes the set of n edges connecting a
pair of nodes and N = {ei|n + 1 ≤ i ≤ n + q} denotes the set of q nodes
except for s and t. Let L = {Li|1 ≤ i ≤ n} where Li is the length of edge
ei, i = 1, 2, . . .,  n. Let �1 = {ω1k|1 ≤ k ≤ z1} be the set of z1 Class 1
components where ω1k denotes the kth Class 1 component, and
�2 = {ω2w|1 ≤ w ≤ z2} be the set of z2 Class 2 components where
ω2w denotes the wth Class 2 component. Each component ω1k (resp.
ω2w) has multiple states, 1, 2, . . .,  M1k (resp. M2w), with correspond-
ing capacities, 0 = h1k(1) < h1k(2) < · · · < h1k(M1k) for k = 1, 2, . . .,  z1
(resp. 0 = h2w(1) < h2w(2) < · · · < h2w(M2w) for w = 1, 2, . . .,  z2), where
h1k(l) (resp. h2w(l)) is the lth capacity of ω1k (resp. ω2w) for l = 1, 2,
. . .,  M1k (resp. M2w). Let c1k (resp. c2w) be the allocation cost of com-
ponent ω1k (resp. ω2w) for k = 1, 2, . . .,  z1 (resp. w = 1, 2, . . .,  z2). In
particular, c1k is the allocation cost per unit of length of component
ω1k. That is, the cost of Class 1 component allocation is proportion to
its length. Let B = (b1, b2, . . .,  bn+q) be a two-class allocation (we gen-
erally call a component allocation in the rest of this paper), where
bi = k if component ω1k is allocated to ei for i = 1, 2, . . .,  n and bi = w if
component ω2w is allocated to ei for i = n + 1, n + 2, . . .,  n + q. Then, the

computer network under B is a capacitated-flow network. In this
study, there should be several assumptions addressed as follows:

(I) Each Class 1 component can be allocated to at most one edge
and each edge must contain exactly one Class 1 component.

(II) Each Class 2 component can be allocated to at most one node
and each node must contain exactly one Class 2 component.

(III) Flow in (E, N) must satisfy the flow-conservation law [21].
(IV) The capacities of different components are statistically inde-

pendent.

3. Problem formulation

3.1. Formulate SR2CAB problem

Let C be an allocation budget. The following constraint says the
total cost of component allocation B should not exceed budget C,

n∑
i=1

(
c1bi

· Li

)
+

n+q∑
i=n+1

c2bi
≤ C, (1)

where
n∑

i=1

(
c1bi

· Li

)
represents the cost of Class 1 component allo-

cation depending on the edge’s length, and

n+q∑
i=n+1

c2bi
represents the

cost of Class 2 component allocation.
Under component allocation B, the maximal capacity of edge

(resp. node) ei denoted by hbi(Mbi) is equal to h1k(M1k) (resp.
h2w(M2w)) if bi = k (resp. bi = w). In other words, the maximal capac-
ity vector under component allocation B is (hb1(Mb1), hb2(Mb2), . . .,
hbn+q(Mbn+q)), designated as MB. Let X = (x1, x2, . . .,  xn+q) denote a
capacity vector where xi denotes the current capacity of ei, i = 1, 2,
. . .,  n + q. Any capacity vector X satisfying the following constraint
is said to be feasible under B,

X ≤ MB, (2)

where constraint (2) means that the current capacity xi cannot
exceed the allocated component’s maximal capacity for i = 1, 2, . . .,
n + q. For the convenience, let UB be the set of such X.

According to the description of the SR2CAB problem, system
reliability evaluation under component allocation B is meaningful
as the total cost of B meets budget C. Let V(X) be the maxi-
mal  flow of (E, N) under X. System reliability under component
allocation B denoted by SRd(B) is defined to be a probabil-
ity that the maximal flow of (E, N) is no less than a given
demand d, i.e., SRd(B) Pr{V(X) ≥ d, X ∈ UB}. For the convenience,
let XB = {X|V(X) ≥ d, X ∈ UB}, and thus system reliability can be
calculated by summing up the probabilities of all X ∈ XB, i.e.,
SRd(B) =

∑
Pr {X|X ∈ · XB}. The mathematical programming formu-

lation for the SR2CAB problem is therefore represented as follows:

Maximize SRd(B) =
∑

Pr{X|X ∈ XB} (3)

Subject to

bi = k for i = 1, 2, . . .,  n, (4)

bi = w for i = n + 1, n + 2, . . ., n + q, (5)

bi /= bj for i /= j and i, j ∈ {1, 2, . . .,  n}, (6)

bi /= bj for i /= j and i, j ∈ {n + 1, n + 2, . . .,  n + q}, and (7)

n∑
i=1

(
c1bi

· Li

)
+

n+q∑
i=n+1

c2bi
≤ C. (8)
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