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a b s t r a c t

This paper addresses the problem of pairwise comparisons in spectral ranking from an ordinary differ-
ential equation view. Given a nonnegative symmetric matrix A of order n, we provide an ( )O 1 algorithm
for single pairwise comparison without computing the exact value of the principal eigenvector of A if
assuming A and A2 have been constructed offline, which further leads to an ν( )O 2 algorithm for ranking
any subset of size ν, or an ( )O kn algorithm for the top k selection. We prove that in ER graphs the correct
rate of pairwise comparisons converges to one as n approaches infinity. We also experimentally de-
monstrate the high correct rate on various artificial and real-world graphs.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Eigenvector inspired algorithms have found countless applica-
tions in machine learning [1–3]. In spectral clustering, eigenvec-
tors of similarity matrices mirror the cluster information of dataset
[4–6]. In dimension reduction, they represent the intrinsic co-
ordinates of high-dimensional data that obeys a low-dimensional
manifold structure [7]. In particular, the principle eigenvector (PE,
the eigenvector corresponding to the largest eigenvalue) is espe-
cially attractive in spectral ranking [8], e.g., PageRank [9,10], HITS
[11,12], or IsoRank [13], where the PEs of the matrices describing
the link relationship between nodes specify importance score to
each node.

There exist plenty of iterative methods for extracting PEs. In
practice, the most preferred one possibly belongs to the family of
power iterations [14,15]. There also exist some other choices,
especially for fast approximating the PageRank vector, e.g., the
Monte Carlo sampling based on short random walks [16], sub-
graph based method [17], ϵ-approximation method [5], and linear
system solver related method [18]. However, it is important to
note that in many applications, we are often interested with the PE
induced order, instead of its exact value. The traditional methods
thus do much more than necessary.

This paper addresses the general problem of pairwise com-
parisons among the PE of nonnegative symmetric matrices with-
out computing the PE's exact value. To the best of our knowledge,

this is the first method explicitly avoiding the computation of ei-
genvectors in spectral ranking, which leads to an ( )O 1 pairwise
comparison algorithm developed under an ordinary differential
equation (ODE) based framework. We strictly prove the converge
of the proposed algorithm in sufficiently large Erdős–Rényi (ER)
graphs (a type of random graphs with each edge independently
generated), and experimentally show its effectiveness and effi-
ciency on various artificial and real-world networks. In addition,
some direct extensions are also discussed, e.g., ranking an subset
of PE in ν( )O 2 with ν being the size of the subset, or the top k
selection in O(nk) with n being the order of matrices, both of
which have common interests in practice. The algorithm of this
paper makes it possible for spectral ranking algorithms such as
HITS to deal with large-scale datasets in real time. Throughout the
paper, we indicate matrices and vectors using bold faced letters.

2. Motivation from the 2-D case

This section provides one useful lemma, and uses the 2-D case
to show the basic idea behind the algorithm. The starting point of
this paper refers to the Oja's rule [19,20], whose typical application
lies in Principal Component Analysis, thus naturally bridged to PE
related problems. As a neural network based eigenvector solver,
the Oja's rule tends to be quantified using ODEs. In this paper, we
consider the following differential system:

̇ ( ) = ( ) ( ) ( ) − ( ) ( ) ( ) ( )t t t t t t tx x x Ax x Ax x , 1T T

where A is a real symmetric matrix and ̇ ( )tx denotes the derivative
of ( )tx w.r.t. t. The above system falls in the class of generalized
Oja's rules in [21] for extracting PEs. Also, note that reversing the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2016.08.029
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: mathtygo@gmail.com (Y. Tang), liyinrun26@163.com (Y. Li).
1 Postal address: Room 5602, NanYi Building, Chengdu University of Technol-

ogy, ErXianQiao East 3rd Road No. 1, Chengdu, Sichuan 610059, China.

Please cite this article as: Y. Tang, Y. Li, Pairwise comparisons in spectral ranking, Neurocomputing (2016), http://dx.doi.org/10.1016/j.
neucom.2016.08.029i

Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.08.029
http://dx.doi.org/10.1016/j.neucom.2016.08.029
http://dx.doi.org/10.1016/j.neucom.2016.08.029
mailto:mathtygo@gmail.com
mailto:liyinrun26@163.com
http://dx.doi.org/10.1016/j.neucom.2016.08.029
http://dx.doi.org/10.1016/j.neucom.2016.08.029
http://dx.doi.org/10.1016/j.neucom.2016.08.029
http://dx.doi.org/10.1016/j.neucom.2016.08.029
http://dx.doi.org/10.1016/j.neucom.2016.08.029


sign of the right side of (1) leads to the Minor Component Analysis
algorithm in [22].

Throughout the paper, we will assume that = ( )aA ij is non-
negative and has an unrepeated largest eigenvalue. Moreover, we
will use PE to mean the nonnegative PE since spectral ranking
algorithms always stand on the nonnegative PE (also note from
the Perron-Frobenius theorem that any nonnegative A is sure to
have a nonnegative PE). Let PE ( ) ̇ ( )x t x t, ,i i i , and ¨ ( )x ti , be the ith
element of PE, ( )tx , ̇ ( )tx , and ¨ ( )tx (the second-order derivative of

( )tx ), respectively.
Although the convergence analysis of (1) or general cases has

been carried out in [21] or [22], here we provide a different, but
more straightforward convergence analysis for (1), from which we
also obtain necessary equations for the next section that are un-
available in [21,22].

Lemma 1. Given any positive starting point ( )x 0 (thus the projection
of ( )x 0 on PE is positive), then except a positive scale, the solution of
(1), ( )tx , converges to PE (see proof in Appendix).

Next, the 2-D case is used to show what bridges the dynamical
behavior of (1) and the purpose of sorting PE. Firstly, note

that ( )tx has invariant norm since = ( ) ̇ ( ) =[ ( ) ( )] t tx x2t t
t

Tx xd
d

T

( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) =t t t t t t t tx x x Ax x Ax x x2 2 0T T T T . Thus, we have
∥ ( )∥ = ∥ ( )∥tx x 0 for ∀ t , where ∥·∥ denotes the Frobenius norm.
Thus, ( ) = …t tx , 0, 1, 2, , lives on a circle centered at the original
point. If letting ( ) = [ ] ∀ >a a ax 0 , , 0T , ( )tx will move along the
circle clockwise or anticlockwise until meeting PE. The reason why

( )tx cannot cross PE lies in: (1) ( )tx has zero speed when meeting
PE; (2) ( )tx cannot change its moving direction from clockwise to
anticlockwise (or vice verse) since ( )tx , as a solution of an ODE, can
not generate intersections. In a word, there are only two possible
trajectories for ( )tx starting from [ ]a a, T , as plotted in Fig. 1(a) and
(b). Thus, the task to compare PE1 with PE2 can be achieved in a
one-step fashion: let ( ) = [ ]x 0 1, 1 T1

2
and update ( )x 0 to ( )x 1 using

(1), then without any effort for computing PE we can claim:
≷PE PE1 2 if ( )≷ ( )x x1 11 2 . Note that comparing ( )x 11 with ( )x 12 can be

reduced to comparing ̇ ( )x 01 with ̇ ( )x 02 since ( ) = ( )x x0 01 2 , and from
(1) this can be further simplified to checking which element in

( )Ax 0 is bigger since both ( ) ( )x x0 0T and ( ) ( )x Ax0 0T are real num-
bers, and ( ) = ( )x x0 01 2 .

For the general case of >n 2, let ( ( ))tP xij be the projection of
the curve ( ) ∈tx Rn on the plane x xi j , where x xi j denotes the plane

spanned by the ith and jth axes in Rn. The key point supporting
the analysis in the 2-D case is that with any ( )x 0 chosen on the line

= >x x 01 2 , then ( ) >t tx , 0, is guaranteed not to cross the line
=x x1 2 again. In the case of >n 2, one may have expected that
( ( ))tP xij would have the same property on the plane x xi j as above,

such that the analysis in the 2-D case can be directly generalized.
Unfortunately, ( ( ))tP xij may cross the line xi¼xj more than once

even if ( )x 0 is chosen to be positive and satisfies ( ) = ( )x x0 0i j .
However, we will show in the next section that with probability
one the sign of − ≠ = …i j i j nPE PE , , , 1, ,i j , can be determined in

( )O 1 based on the similar motivation as above when the under-
lying graph follows the ER model with n sufficiently large. In the
same section, we will provide numerical evidence to explain the
high correct rate of the proposed algorithm on various types of
model based graphs (e.g., scale-free or small-world networks).
Implementation details are discussed in Section 4, where two di-
rect extensions based on the pairwise comparisons are also de-
veloped for the subset ranking and top k selection. Section 5
provides experimental results and Section 6 concludes the paper.

3. Determining the sign of ( −PE PEi j) in general cases

Fig. 1(c)–(h) plots six typical ( ( ))tP xij 's on the x xi j plane. In-
tuitively, ( ( ))tP xij 's shown in Fig. 2(g) and (h) are more revealing
due to the following facts: with higher probability those two
curves will not cross the line xi¼xj again for >t 0 since both are
tangent to the line xi¼xj at t¼0, and will (locally) move away from
the line xi¼xj soon since both have unequal acceleration along
axes. On the contrary, ( ( ))tP xij 's in Fig. 1(e) and (f) will not im-
mediately diverge from the line xi¼xj since ̇ ( ) = ̇ ( )x x0 0i j and
¨ ( ) = ¨ ( )x x0 0i j , indicating that it is impossible to compare PEi with
PEj only based on ( )x 1 . As for two curves in Fig. 1(c) and (d), the
plotted trajectories are unpredictable in the sense that intuitively
we have no confidence to predict whether they will cross the line
xi¼xj at some >t 0 or not, thus are not our desired cases either.

Here, we do not depict more trajectories, e.g., the analogues to
Fig. 1(g) and (h) but corresponding to ̇ ( ) = ̇ ( ) <x x0 0 0i j . Never-
theless, it is not hard to summarize the following conditions for
positive ( )x 0 such that ( ( ))tP xij agrees with those shown in Fig. 2
(g), (h), as well as their analogues mentioned as above:

( ) = ( ) ̇ ( ) = ̇ ( ) ¨ ( ) ≠ ¨ ( ) ( )x x x x x x0 0 ; 0 0 ; 0 0 . 2i j i j i j

Fig. 1. (a) and (b) Two trajectories of ( )tx in the 2-D case with ( ) = ( ) >x x0 0 01 2 move to PE along circles. (c)–(h) Typical projections of ( )tx on the x xi j plane with
( ) = ( )x x0 0i j . The last two are tangent to xi¼xj with nonequal acceleration at t¼0, thus are our desired cases.
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