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a b s t r a c t

Semi-supervised discriminant analysis (SDA) is a recently-developed semi-supervised dimension re-
duction method for improving the performance of Fisher linear discriminant analysis (FDA), which at-
tempts to mine the local structures of both labeled and unlabeled data. In this paper, we develop new
semi-supervised and unsupervised discriminant analysis techniques. Our semi-supervised method, re-
ferred as to as recursively global and local discriminant analysis (RGLDA), is modeled based on the
characterizations of “locality” and “non-locality”, such that the manifold regularization in the formulation
has a more direct connection to classification. The objective of RGLDA is a “concave-convex” program-
ming problem based on the hinge loss. Its solution follows from solving multiple related SVM-type
problems. In addition, we also propose a simple version (called URGLDA) for unsupervised dimension
reduction. The experiments tried out on several image databases show the effectiveness of RGLDA and
URGLDA.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In many real applications, such as face recognition, we are
usually faced with high-dimensional data. The data may be re-
presented by original images or many kinds of visual features [45].
In such cases, exacting good features is crucial for mitigating the
so-called “curse of dimensionality” and improving the perfor-
mance of any pattern classifier. Dimensionality reduction techni-
ques, such as Principal Component Analysis (PCA) [1,18] and Fisher
Linear Discriminant Analysis (FDA) [2,14,35], are developed for this
purpose. PCA and FDA have been widely applied in the fields of
pattern recognition and computer vision. Many experimental
studies have shown that FDA outperforms PCA significantly
[3,4,36]. PCA can also be used for the data reconstruction. Same as
PCA, the k-dimensional coding schemes [41,42] attempt to re-
present data using a set of representative k-dimensional vectors.
Bian et al. [44] presented analysis on the bound of FDA.

Recently, there is much interest in developing manifold learn-
ing algorithms, e.g., Isometric Feature Mapping (ISOMAP) [5], Local
Linear Embedding (LLE) [6], Laplacian Eigenmap (LE) [7], and Lo-
cality Preserving Projections (LPP) [8]. A main problem of ISOMAP,

LLE and LE is that they y cannot map the unknown points [8]. LPP
was proposed to deal with this problem [37,38]. Such an algo-
rithm, however, have no direct connection to classification [9],
which only characterizes local scatter and ignores the character-
ization of “non-locality”. Recently, Yang et al. [9] proposed Un-
supervised Discriminant Projection (UDP) to resolve this issue.
UDP is modeled based on “locality” and “non-locality” [9]. In these
unsupervised methods, the prior class information is not used.

Supervised learning algorithms may not generalize well enough
when there is no sufficiently supervised information, although they
generally outperform unsupervised learning algorithms [39,40]. Fur-
thermore, collecting labeled data is generally more involved than col-
lecting unlabeled clearly [10], since it requires expensive human labor,
and a large amount of noise and outlier data are easy to be introduced.
In [43], Liu et al. have attempted to use importance reweighting to solve
the classification problems where the labeled samples are corrupted. In
order to sufficiently exploit unlabeled data for better classification,
many semi-supervised learning algorithms, such as Transductive SVM
(TSVM) [11] and graph-based semi-supervised learning algorithms
[10,12], have been recently developed. Among them, Manifold Reg-
ularization (MR) [10] is the most attractive [10]. However, these algo-
rithms are developed for classification problems. Based on distance
learning [46], Yu et al. [47] proposed semisupervised multiview dis-
tance metric learning. In dimension reduction, Cai et al., [13] proposed a
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novel method, called semi-supervised discriminant analysis (SDA). It
not only preserves the discriminating information of labeled data but
also the local structure of both labeled and unlabeled data. Specifically,
both labeled and unlabeled data are used to build a graph Laplacian [13]
that is incorporated into the FDA to smooth the mapping. SDA inherits
the respective superiorities of FDA and manifold learning. However,
SDA focuses only on the local geometry, such that it has no direct
connection to classification [39]. A basic assumption behind SDA is that
nearby points will have similar embeddings [13], which is consistent
with the manifold assumption [10]. In practice, if the manifold as-
sumption holds, the points from different classes could lie in different
manifolds, which means that if we would like to obtain a better pro-
jection than that yielded by SDA, then, like UDP [9], the “non-locality”
should be also taken into account in the framework of SDA, such that as
much discriminant information of labeled and unlabeled points as
possible can be mined. Based on SDA, Huang et al. [32] proposed TR-
FLDA. By employing the similar idea in TR-FLDA, Dornaika et al. [33]
proposed a new graph-based semisupervised DR (GSDR) method.
However, these two methods suffer from the same problems of SDA.
For existing eigenvalue-based dimension reduction techniques, it is
difficult to introduce the sparsity in the projection matrix [15]. The last
few years has seen few elegant sparse dimension reduction techniques
in multi-class setting, such as Sparse PCA (SPCA) [15], which uses
L1-penalized regression on regular projection axes. With the similar
technique, we can also develop a multi-class sparse SDA method.
However, they are two-stage approaches. Intuitively, it is too naive to
believe that there is no any information loss in the two-stage proces-
sing. We believe that sparsity should be introduced into the model by
entirely following the genuine geometrical interpretation of SDA for the
guarantee of obtaining a good performance.

In this paper, we propose a new semi-supervised dimension re-
duction method, called Recursively Global and Local Discriminant
Analysis (RGLDA) which includes two steps. First, a novel dimension
reduction framework for semi-supervised learning, called Global and
Local Discriminant Analysis (GLDA), is proposed. In addition to in-
corporating the basic idea behind SDA of finding an optimal projec-
tion and estimating the local geometry of a relatively limited amount
of labeled data as well as considerable unlabeled data, GLDA si-
multaneously mines the underlying non-local structure of labeled and
unlabeled data. Second, the projections are generated by using the
similar recursive procedure as suggested in RFDA [19]. The new al-
gorithm is essentially developed from the SDA but has a significant
performance advantage. Different from SDA which maximizes the
squared sum of all the pairwise distances between class means, our
method maximizes every pairwise distance between class means and
allows some pairwise distances commit the maximization limit.
Moreover, the prior work [16,17,32] on various recognition tasks has
demonstrated that casting an eigenvalue-based problem as a related
SVM-type problem can lead to better recognition rates. In addition,
we extend RGLDA to a simple version (called RGLDA) for un-
supervised dimension reduction. The main contributions of this study
are summarized as follows:

1) We propose a framework for semi-supervised and un-
supervised dimension reduction, whose unique idea can be
used in most of the up-to-date semisupervised dimension re-
duction methods, such as TR-FLDA [33], and GSDR [34].

2) Our work characterizes not only the local but also the non-local
quantities, such that the mapping has a direct connection to
classification.

3) Our proposed framework is flexible. To be specific, the special
formulation allows us to easily develop the sparse semi-
supervised model by incorporating various regularization
techniques into the formulation in future work. Unlike the re-
cently proposed two-stage sparse methods, the sparsity is di-
rectly introduced to the model.

We organize this paper as follows. Section II gives a brief re-
view of FDA and SDA. In section III, we give a basic framework for
dimension reduction that casts an eigenvalue-based problem as an
SVM-type problem, proposes GLDA, and shows its solution. Sec-
tion IV develops recursive GLDA (RGLDA), which aims at gen-
erating multiple projection axes. In section V, a simplified di-
mension reduction method for unsupervised learning is proposed.
In section VI, we evaluate our algorithms on several image data-
bases. Section VII gives a method of constructing sparse dimension
reduction methods based on the formulation of RGLDA. In the last
section, we draw some conclusions.

2. Review of FDA and SDA
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are labeled and unlabeled data, respectively.

The labeled data is from c different classes. There are Nu samples in
each class, which are represented by = …D u c, 1, 2, ,u . Define by

= ∈ ( ≤ ≤ )d nz 1d a low-dimensional representation of a high-
dimensional sample x in the original space, where d is the di-
mensionality of the reduced space. The purpose of dimension re-
duction is to seek for a transformation matrix W , such that a lower
representation z of the sample x can be calculated as =z W xT ,
where “ T” denotes the transpose. Other notations are listed in
Table 1, each being explained when it is first used.

2.1. Fisher linear discriminant analysis (FDA)

FDA, as a popular supervised dimension reduction method,
aims at finding the projection that simultaneously maximizes the
between-class scatter and minimize the within-class scatter. That
is, we can obtain the projection by maximizing the following ob-
jection function
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where the within-class scatter matrix SW is defined by
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Table 1
Notations.

∈ ×S Rw
n n The within-class scatter;

∈ ×S RB
n n The between-class scatter;

∈ ×S Rt
n n The global scatter;

μ ∈( ) Ru n The mean vector of the samples in class u;

μ ∈ Rn The Total mean of the samples;

∈ ×H Rm m The adjacency matrix;

ρ A regularization parameter;
v A regularization parameter;

∈ ×D Rm m A diagonal matrix whose entries on diagonal are column
or row sum of H;

= − ∈ ×L D H Rm m The Laplacian matrix;

= ∈ ×S XLX RL
T n n A graph scatter matrix;

fi and gi Two real-values convex functions on a vector space Z;

{ }( ′)T f z z,1 The first order Taylor expansion of f at locationz;

∂ ( )f zz The gradient of the function f at location z;

ξ ∈ Rm The Hinge loss function;
( )X u The sample matrix of class u;

( )e u A column vector of ones of size( ( )X u ) dimensions.

S. Gao et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: S. Gao, et al., Recursively global and local discriminant analysis for semi-supervised and unsupervised
dimension reduction with image analysis, Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.08.018i

http://dx.doi.org/10.1016/j.neucom.2016.08.018
http://dx.doi.org/10.1016/j.neucom.2016.08.018
http://dx.doi.org/10.1016/j.neucom.2016.08.018


Download English Version:

https://daneshyari.com/en/article/4948381

Download Persian Version:

https://daneshyari.com/article/4948381

Daneshyari.com

https://daneshyari.com/en/article/4948381
https://daneshyari.com/article/4948381
https://daneshyari.com

