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a b s t r a c t

Neuroscientists formulate very different hypotheses about the nature of neural coding. At one extreme, it
has been argued that neurons encode information through relatively slow changes in the arrival rates of
individual spikes (rate codes) and that the irregularity in the spike trains reflects the noise in the system.
At the other extreme, this irregularity is the code itself (temporal codes) so that the precise timing of
every spike carries additional information about the input. It is well known that in the estimation of
Shannon Information Transmission Rate, the patterns and temporal structures are taken into account,
while the “rate code” is already determined by the firing rate, i.e. by the spike frequency. In this paper we
compare these two types of codes for binary Information Sources, which model encoded spike trains.
Assuming that the information transmitted by a neuron is governed by an uncorrelated stochastic pro-
cess or by a process with a memory, we compare the Information Transmission Rates carried by such
spike trains with their firing rates. Here we show that a crucial role in the relation between information
transmission and firing rates is played by a factor that we call the “jumping” parameter. This parameter
corresponds to the probability of transitions from the no-spike-state to the spike-state and vice versa. For
low jumping parameter values, the quotient of information and firing rates is a monotonically decreasing
function of the firing rate, and there therefore a straightforward, one-to-one, relation between temporal
and rate codes. However, it turns out that for large enough values of the jumping parameter this quotient
is a non-monotonic function of the firing rate and it exhibits a global maximum, so that in this case there
is an optimal firing rate. Moreover, there is no one-to-one relation between information and firing rates,
so the temporal and rate codes differ qualitatively. This leads to the observation that the behavior of the
quotient of information and firing rates for a large jumping parameter value is especially important in the
context of bursting phenomena.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental problem in neuroscience is to understand how
neurons encode and process information [1–3]. In general, it is not
easy to determine the neural code structure. Since Adrian's ex-
periments [4], which established that individual sensory neurons
produce action potentials, or spikes, it has been assumed that a
single neuron provides information just through spike sequences,
i.e. spike trains. Although it is now generally accepted that a spike
sequence is the way in which the information is coded by a single
neuron, the structure and the mechanisms of code formation re-
main a mystery. In 1976, Burns and Webb [5] showed for the first
time that the total number of emitted spikes arrives in a highly
irregular manner. When the same stimulus is applied repeatedly,
the number of spikes varies substantially from trial to trial [6]. This
has led neuroscientists to formulate very different hypotheses

about the nature of the neural code. Two non-mutually exclusive
main theories are of special interest. The first theory is based on
“temporal code” [3,7–9], which considers the structure of the spike
trains while the second, referred to as “rate code” theory [1,3,10–
12], assumes that the neural code is embedded in the spike fre-
quency, defined as the number of spikes emitted per second. The
temporal coding mechanism, which builds a temporal relationship
between the output firing patterns and the inputs of the nervous
system, has received significant attention [13–15].

The temporal rules used for processing precise spiking patterns
have recently emerged as ways of emulating the brain's compu-
tation from its anatomy and physiology, especially in the context
of learning and classification problems. In [16], a unified and
consistent feedforward system network with a proper encoding
scheme and supervised temporal rules was built to solve the
pattern recognition task. In this scheme, external stimuli are
converted into sparse representations and these temporal patterns
are then learned through biologically derived algorithms in the
learning layer, followed by the final decision presented through
the readout layer. In [17], an integrated computational model with
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a latency-phase encoding method and a supervised spike-timing-
based learning algorithm was developed. The classification cap-
abilities of such a system that precisely computes timed spikes and
realistic stimuli, analogous to cognitive computation in the human
brain, have been demonstrated. Recently, efficient pattern classi-
fication methods exploiting two layered spiking neural networks
have been proposed [18]. In this network, the input layer consists
of receptive field neurons, which convert a real-valued input into
spikes using the population coding scheme, without any delays. A
functional role for precise spike timing has been considered as an
alternative hypothesis to rate coding [19], where it was shown that
both the synchronous firing code and the population rate code can
be used dually in a common framework of a single neural network
model. Ref. [20] addressed how efficient stimulus encoding can be
carried out within the early stages of the olfactory system. The
authors compared the rate-coding scheme with the direct trans-
mission of graded potentials in terms of the accuracy of the esti-
mate that an ideal observer may make about the stimulus. Ref. [21]
applied weight limitation constraints to the spike time error-
backpropagation algorithm for temporally encoded networks of
spiking neurons. They presented a novel solution to the problem
raised by non-firing neurons, which lead to a reliable and efficient
convergence of the learning algorithm. Ref. [22] proposed a new
learning machine method consisting of a recurrent hierarchical
neural network of unsupervised processing units, which they
called the Clustering Interpreting Probabilistic Associative Mem-
ory design. It turned out that this network exploiting temporal
spike pattern rules recognize rotated, translated and scaled pat-
terns. Addressing the speed of visual processing, a model that
exploits orthogonal wavelet transform was developed [23]. This
strategy provides a spike code, thanks to a rank order coding
scheme, which offers an alternative to the classical firing rate
coding scheme. It can provide efficient real-time applications
using an artificial asynchronous neural network that can mimic
nature's performance.

This successful classification methodology has also been sup-
ported experimentally. Using the MNIST handwritten digit data-
base for machine learning [24], it has been shown that neural net
classifiers tend to perform significantly better than other types of
classifiers. Specifically, the convolution structure of neural nets
accounts for the excellent classification performance.

These results illustrate that the pattern recognition, and con-
sequently the temporal coding, plays an important role in the
design of efficient decoding rules based on neuronal networks. Our
paper supports these assumptions, especially the alternative hy-
potheses [19,23] of temporal and rate coding. We show that
temporal coding plays an important role when the activity of the
neurons is high, i.e.“jumping” parameter, which measures transi-
tion from state to state is large. Depending on this parameter,
temporal coding can be more effective than rate coding.

However, in the transfer of information, the process demanding
the most energy is the spiking process [25,26]. Thus, in the first
approximation, the firing rate can be treated as the energy marker.
Inspired by thermodynamics [27], we also consider the derivative
of entropy over energy, which is the analog of the inverse of the
temperature.

In this paper we provide theoretical insights into the under-
standing of the nature of the neural code by studying this problem
for two types of binary Information Sources. Assuming that the
information transmitted by a neuron is governed by uncorrelated
stochastic processes or by processes with a memory, we study the
relation between the Information Transmission Rates (ITR) carried
by such spike trains and their firing rate (FR). To this end, the In-
formation-Firing-Quotient (IFQ), i.e. the ratio of information and
firing rate, is introduced in Section 2. For large IFQ, the amount of
transmitted information is more optimal but it comes at the cost of

unit energy. Thus, the value of Fr for which IFQ is maximal, can be
understood as an optimal value in this sense. Having parameters
that characterize the Information Source and the communication
channel, one can determine this optimal firing rate numerically.
We show that the crucial role in studying IFQ properties is played
by the “jumping” parameter. This parameter is the sum of transi-
tion probabilities from a no-spike-state to a spike-state and vice
versa. We show that, for low jumping parameter values, the quo-
tient of information and firing rates is a monotonically decreasing
function of the firing rate and there is therefore a straightforward,
one-to-one, relation between the temporal and the rate codes.
However, it turns out that for large enough values of the jumping
parameter, this quotient is a non-monotonic function of the firing
rate and it exhibits a clear global maximum. Thus, in this case
there is an optimal firing rate. Moreover, there is no one-to-one
relation between information and firing rate, and the temporal
and rate codes differ qualitatively. The behavior of the quotient of
information and firing rates for large values of the jumping para-
meter is especially important in the context of bursting phenom-
ena [28–30].

The paper is organized as follows: in Section 2, we briefly state
the basic concepts of Information Theory and formulae concerning
Bernoulli and Markov processes; in Section 3, we present the
comparison of information transmission and firing rates for these
processes; and the last section contains the Discussion and
conclusions.

2. Information Theory in neuroscience

In neuroscience, information transfer has been quantified by
many authors in terms of Information Theory [3,31]. In general,
neuronal communication systems are represented by an In-
formation Source, a communication channel and output signals
[32–34]. Both messages coming from the Information Source and
the output signals are represented by sequences of symbols
[3,30,31,35,36]. These sequences can be understood as trajectories
of stationary stochastic processes. In this paper, we study the In-
formation Sources represented by Bernoulli or Markov processes
[35,37]. Markov processes are adequate for modelling spike trains,
especially when the neuron firing times in individual trials are of
interest [38]. When large numbers of neurons are considered, the
spike times for the collection of neurons are often modelled as a
Poisson process. Sometimes, as an alternative, non-homogeneous
Poisson models are employed for interspike intervals [38]. In these
cases similar considerations would be performed. In these cases
there are not explicit analytical formulas for ITR; therefore, the
first step in the analysis would be based on numerical simulations.

Entropy. First, we briefly recall the fundamental concepts of
Information Theory [32–34] that are adapted to neuroscience is-
sues. Let ZL be a set of all words (i.e. blocks) of length L, built of
symbols (letters) from some finite alphabet Z. Each word zL can be
treated as a message sent by Information Source Z being a sta-
tionary stochastic process. If ( )P zL denotes the probability that the
word ∈z ZL L occurs, then the information in the Shannon sense
carried by this word is defined as

( )≔ − ( ) ( )I z P zln . 1L L

In this sense, less probable events carry more information. We use
the natural logarithm to obtain a more compact form of the for-
mulas. When logarithm to the base 2 is used, the ln 2 factor has to
be included. Expected or average information of ZL, called Shannon
block entropy, reads as follows:

∑( )≔ − ( ) ( )
( )∈

H Z P z P zln .
2
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