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a  b  s  t  r  a  c  t

In the  paper,  two  novel  negative  selection  algorithms  (NSAs) were  proposed:  FB-NSA  and  FFB-NSA.  FB-
NSA has  two  types  of  detectors:  constant-sized  detector  (CFB-NSA)  and  variable-sized  detector  (VFB-
NSA).  The  detectors  of  traditional  NSA  are  generated  randomly.  Even  for the same  training  samples,  the
position,  size,  and  quantity  of the  detectors  generated  in  each  time  are  different.  In  order  to  eliminate  the
effect  of  training  times  on  detectors,  in the  proposed  approaches,  detectors  are  generated  in  non-random
ways.  To  determine  the  performances  of  the  approaches,  the  experiments  on 2-dimensional  synthetic
datasets,  Iris  dataset  and  ball bearing  fault  data  were  performed.  Results  show  that  FB-NSA  and  FFB-
NSA  outperforms  the  other  anomaly  detection  methods  in  most  cases.  Besides,  CFB-NSA  can  detect  the
abnormal  degree  of  mechanical  equipment.  To  determine  the performances  of CFB-NSA,  the  experiments
on  ball  bearing  fault  data  were performed.  Results  show  that the  abnormal  degree  based  on the CFB-NSA
can  be  used  to diagnose  the  different  fault  types  with  the  same  fault  degree,  and  the  same  fault  type  with
the  different  fault  degree.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Anomaly detection problem can be stated as a one-class clas-
sification problem, because only normal samples are available at
training stage [1]. The task of anomaly detection method is simi-
lar to that of the biological immune system because both of them
aim to detect the abnormal information [2]. The negative selec-
tion algorithm (NSA) was proposed by Forrest et al. in 1994 under
the inspiration of the mechanism of T-cell maturation in the thy-
mus [3–5]. Many modified versions of NSA algorithms had provided
more efficient solutions for problems of anomaly detection [6–8],
fault diagnosis [9], computer security [10,11], and optimization
[12].

The initial NSA used binary encoding to represent self and non-
self samples [3]. Later, a real-valued NSA (RNSA) was  presented,
and the hypersphere detectors with constant radius were adopted
[13,14]. Soon after, variable-sized detector [15,16], hypercube
detector [2,14], hyper-ellipsoid detector [17,18], and multi-shaped
detector [19] were proposed. Compared with these detectors, the
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hypersphere detector is more widely used, because it has a simple
mathematic description.

In order to achieve enough detector coverage and reduce the
detector number, many methods were proposed [20–25]. Although
the methods mentioned above can improve the detection rate and
eliminate the holes, the detectors of these methods are generated
at random. Even for the same training data, the position, size and
quantity of detectors generated in each time are different. Little
attention has been paid to the NSA with constant detectors. That is,
the position, size and quantity of NSA detectors are constant. These
detectors are only related to the training samples, and have nothing
to do with training times.

The paper presents two negative selection algorithms with
constant detectors. One is named as Boundary-Fixed Negative
Selective Algorithm (FB-NSA). The other is an improved FB-NSA
algorithm named Fine Boundary-Fixed Negative Selective Algo-
rithm (FFB-NSA). FB-NSA and FFB-NSA generate a layer of detectors,
which are around the self space. The FB-NSA detectors and
FFB-NSA detectors seem to be the boundary of self space and
non-self space. Self samples are on one side of the detectors, and
non-self samples are on the other side of detectors or within
detectors.

The remaining sections of the paper are structured as follows.
The models of FB-NSA, FFB-NSA and CFB-NSA are presented in
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Fig. 1. FB-NSA detectors and FFB-NSA detectors (rs = 0.07).

detail in Sections 2, 3 and 4, respectively. The experimental results
are presented in Section 5. In Section 6, conclusions are provided.

2. Boundary-Fixed Negative Selection Algorithm (FB-NSA)

2.1. The implementation of FB-NSA

The detectors of traditional RNSA are generated at random. The
detectors which are around the self space can be generated easily,
but they can not be directly used for anomaly detection. It is easy to
calculate the distance between a detector and a testing sample, but
it is difficult to confirm the position relationship between a detector
and a testing sample. Therefore, these detectors cannot recognize
what side of detectors the testing sample is on.

As shown in [0,1]2 in Fig. 1a, t1 belongs to self space and it is
a self sample, marked as t1 ∈ S; t2 and t3 belong to non-self space,
and they are non-self samples, marked as t2 ∈ N, t3 ∈ N. When the
testing algorithm of the traditional NSA is used, t1 ∈ S (right), t2 ∈ N
(right), t3 ∈ S (wrong).

To sum up, the FB-NSA detector can be defined as:

Definition 1. FB-NSA detector,

D = {< di, ri, pi > |di ∈ Rn, ri ∈ R}

where di is the center of FB-NSA detector; ri is the radius of di,
ri = d − rs; d is the distance between di and its the nearest train-
ing sample; rs is the radius of training samples; pi is the position
information of di.

When the radii of FB-NSA detectors are the same, this approach
is named Boundary-Fixed Negative Selective Algorithm with
Constant-Sized Detectors (CFB-NSA). When the radii of FB-NSA
detectors are different, this approach is named Boundary-Fixed
Negative Selective Algorithm with Variable-Sized Detectors (VFB-
NSA). The FB-NSA and FFB-NSA detectors are described in [0,1]2

shown in Fig. 1. There are 26 FB-NSA detectors and 29 FFB-NSA
detectors around the self space. t1 ∈ S, and it is on one side of the
FB-NSA detectors; t3 ∈ N, and it is on the other side of the FB-NSA
detectors; t2 ∈ N, and it is in the detector di, as shown in Fig. 1a.

It is difficult to confirm the position relationship between two
hyperspheres, but it is easy to confirm the position relationship
between two  hypercubes. If the non-self space is filled with the
same hypercubes, the non-self space can be approximated with Eq.
(1):

VNonself = lim
Vhypercube→0

∞∑
i=1

(Vhypercube)
i

(1)

Fig. 2 shows the approximation process in 2-dimensional space.
There are 202, 402, 802, and 1602 squares in Fig. 2a–d, respectively.
It is clear that the boundary of squares in the non-self space can be
approximated to the boundary of non-self space.

Therefore, the FB-NSA detectors can be generated with the
hypercubes which are close to the self space. The center of the
hypercube is the center of the detector, and the position rela-
tionship between the two hypercubes is the position relationship
between two detectors. These hypercubes are defined as boundary
hypercubes, and every boundary hypercube generates a FB-NSA
detector.

The key to generate FB-NSA detector is to obtain the bound-
ary hypercubes. To obtain boundary hypercubes, the state space T
should be evenly divided into mn hypercubes:

T =
mn⋃
i=1

hi, (2)

where m is the number of the segments of each dimension, and n
is the number of space dimension.

Definition 2. Empty hypercube and non-empty hypercube,  when a
hypercube hi is covered by a self sample or a self sample located in
hi, it is non-empty, marked as hi = �.  Otherwise it is empty, marked
as hi = O.

It is complicated to determine whether a hypercube is covered
by self sample through calculation. To simplify the algorithm, a
definition, recognition radius ı, is proposed.

Definition 3. Recognition radius ı, ı is a pre-set distance.

f (hi) =
{

� d ≤ ı

O d > ı
(3)

where d is the distance between ci and training sample sj, and ci is
the center of hypercube hi.

Recognition radius ı is an important parameter to determine the
hypercubes’ property. According to Definition 3, whether a hyper-
cube is empty is determined according to the distance between its
center and self sample. It is clear that to obtain all the hypercubes
which are covered by self sample ı should be larger than rs.

The number of FB-NSA detectors increase with the increase of
ı, but the detection efficiency decrease with the increase of ı. The
hypercube which is less covered or not covered by self sample can
be recognized as the boundary hypercube, when ı is relatively large.
Besides, the generated FB-NSA detectors can not cover the holes
near self space, when ı is relatively large.

The effects of ı on the quantities of FB-NSA detectors in [0,1]2 is
shown in Fig. 3. The state space is evenly divided into 152 squares:
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