
Applied Soft Computing 38 (2016) 10–22

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Evolutionary wrapper approaches for training set selection as
preprocessing mechanism for support vector machines:
Experimental evaluation and support vector analysis

Nele Verbiesta,∗, Joaquín Derracb, Chris Cornelisa,c, Salvador Garcíac,d,
Francisco Herrerac

a Department of Applied Mathematics and Computer Science, Ghent University, Belgium
b Affectv Limited, London, United Kingdom
c Department of Computer Science and AI, Research Center on Information and Communications Technology (CITIC-UGR), University of Granada, Spain
d Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 31 January 2014
Received in revised form 2 September 2015
Accepted 3 September 2015
Available online 30 September 2015

Keywords:
Support vector machines
Training set selection
Data reduction

a b s t r a c t

One of the most powerful, popular and accurate classification techniques is support vector machines
(SVMs). In this work, we want to evaluate whether the accuracy of SVMs can be further improved using
training set selection (TSS), where only a subset of training instances is used to build the SVM model. By
contrast to existing approaches, we focus on wrapper TSS techniques, where candidate subsets of training
instances are evaluated using the SVM training accuracy. We consider five wrapper TSS strategies and
show that those based on evolutionary approaches can significantly improve the accuracy of SVMs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many real-world applications, datasets can contain noisy or
wrong information. Even the best classifiers might not be able to
deal with these datasets. Training Set Selection (TSS, [1–3]) is a good
way to alleviate this problem. It is a preprocessing technique that
only selects relevant instances before applying the classifier. The
objective of TSS is twofold: on the one hand, the accuracy of the
classifier can be improved, while on the other hand, the efficiency
can be enhanced.

TSS has mainly been investigated for the K Nearest Neighbor
(KNN) classifier [4], in that context it is referred to as Prototype
Selection (PS, [5]). There are two main groups of PS techniques.
Wrapper techniques use the KNN classifier to evaluate entire can-
didate subsets of instances, while filter techniques do not make use
of the KNN classifier or only use it to carry out partial evaluations.

In this work we want to study if TSS techniques can also improve
the accuracy of Support Vector Machines (SVMs). As wrapper PS
techniques explicitly use the KNN classifier, they cannot be applied

∗ Corresponding author at: Krijgslaan 281 (S9), 9000 Gent, Belgium.
Tel.: +32 92644770; fax: +32 92644995.

E-mail address: Nele.Verbiest@UGent.be (N. Verbiest).

meaningfully to improve SVM classification. It is clear, however,
that filter PS techniques can be directly applied to SVMs as they
are less dependent on the KNN classifier. On the other hand, filter
methods are in general less suited to improve the accuracy of a
classifier.

To the best of our knowledge, only two filter TSS techniques
have been proposed to specifically improve SVMs. In [6], the Multi-
Class Instance Selection (MCIS) method is proposed, which selects
instances near the boundary between one and the other classes
of datasets. This method focuses on reduction of the dataset to
improve the efficiency of the SVMs. Another approach is presented
in [7], where only training instances that are likely to become
support vectors are selected. This Sparsifying Neural Gas (SNG)
algorithm was developed to improve the efficiency of the SVM
while maintaining or slightly improving the accuracy.

Unfortunately, these filter TSS techniques are unable to improve
the accuracy of the SVMs. Therefore we attempt to improve the
accuracy of SVMs using wrapper approaches. We adapt the five
most important wrapper TSS techniques by plugging the SVM into
the TSS methods. The wrapper techniques we consider evaluate
candidate subsets based on the so-called training accuracy, which
is the accuracy obtained when building the classifier at hand based
on the candidate subset and using this model to classify the entire
training data. In our case we use SVMs to calculate the training

http://dx.doi.org/10.1016/j.asoc.2015.09.006
1568-4946/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2015.09.006
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.09.006&domain=pdf
mailto:Nele.Verbiest@UGent.be
dx.doi.org/10.1016/j.asoc.2015.09.006

N. Verbiest et al. / Applied Soft Computing 38 (2016) 10–22 11

accuracy, and as a result subsets with a high training accuracy will
be well-suited for SVM classification.

The remainder of this paper is organized as follows: In Sec-
tion 2 we provide the necessary background on SVMs. In Section
3 we present existing filter TSS techniques and in Section 4
we present the design of the wrapper TSS techniques for SVMs.
Then, we set up an experimental framework to evaluate the
approaches’ performance in Section 5. By means of an experimen-
tal evaluation on 43 real-life datasets, we show that wrapper TSS
techniques can indeed significantly improve SVM classification.
Evolutionary approaches, and the Generational Genetic Algorithm
(GGA,[8,9]) in particular, seem to be especially well-suited for
our purpose. In order to get more insight into the operation of
the evolutionary wrappers, we provide a more detailed analy-
sis for the latter, investigating the effect of TSS on the SVM’s
support vectors, and illustrating their behavior graphically on a
two-dimensional artificial dataset. Finally, we conclude in Section
6.

2. Preliminaries

In this subsection we provide a general background on SVMs
to make the paper self-contained. We denote instances by their
feature vectors x. For now, we consider two-class problems, the
class of an instance is either −1 or 1. At the end of this section we
discuss the multi-class case.

The most basic form of SVMs are separating hyperplanes, where
one aims to separate the two classes linearly by a hyperplane. The
hyperplane can be represented by a linear function f(x) that is opti-
mized such that the distance from the hyperplane to the closest
instances from both classes is maximal. To classify a new instance
t, the value f(t) is calculated. When f(t) > 0, t is classified to class 1
and else to the negative class −1.

In practice, the data is often not linearly separable, which led
to the introduction of support vector classifiers, which allow for
overlap between the classes. The idea is to find a hyperplane that
maximizes the margin between the two classes, but allows for
some data points to fall on the wrong side of the margin. Of course
the number of misclassified training points is bounded. It can be
shown that the resulting hyperplane is a linear combination of a
set of instances, these lie on the classification margin and are called
support vectors.

To allow for even more flexibility, kernel-based SVMs were
introduced. Before constructing the separating hyperplane, the fea-
ture space is enlarged using a function h such that for two feature
vectors x1 and x2

h(x1)th(x2) = K(x1, x2) (1)

where K is a kernel function. A well-known example is the Radial
Basis Function (RBF) kernel (x1, x2 feature vectors):

K(x1, x2) = exp(−||x1 − x2||2
2�2

). (2)

The separating hyperplanes are represented by a function f that
takes values in (− ∞ , ∞). However, it is more useful to obtain
probabilities. Therefore, a sigmoid model can be used to calculate
the probabilities P(y = 1|f). This scaling, referred to as Platt’s scaling
[10], can also be seen as training the model to find a better thresh-
old: instead of using the standard 0 as threshold to classify test
instances, we can train the model based on the class probabilities
to find a better threshold.

The discussed methods apply to two-class problems. A tradi-
tional approach to handle multi-class problems is pairwise coupling
[11–13], where the multi-class problem is decomposed in all possi-
ble two-class problems and the majority voting principle is applied.
For instance, when there are K classes, for each pair of classes

i and j with i, j ≤ K and i /= j, the binary SVM is constructed. A
new instance is classified by all classifiers, and each class gets
a vote if the new instance is classified to that class. The class
with the highest number of votes is the final class returned for
that instance. Another approach is the so-called one-versus-all
technique. In this case, K training datasets are considered, where
in each dataset one class is the positive class and the remain-
ing classes form the negative class. The SVM is trained on each
of these training datasets and the target instance t is classified
by each SVM. Each SVM returns a probability value p express-
ing the confidence that t should be classified to the positive class.
Finally, t is classified to the class for which this probability is max-
imal.

3. Related work: filter TSS techniques for SVMs

In [5], a comprehensive overview of TSS techniques is pro-
vided. Apart from the already mentioned distinction between
wrapper and filter approaches, TSS techniques can also be cate-
gorized as edition, condensation or hybrid methods: while edition
(or editing) methods remove noisy instances in order to increase
classifier accuracy, condensation methods compute a training set
consistent subset, removing superfluous instances that will not
affect the classification accuracy of the training set. Finally, meth-
ods that eliminate both noisy and superfluous are called hybrid
ones.

As we are mainly interested in improving the accuracy of SVM
classification, we only consider the nine editing filter techniques
discussed in [5]. They are reviewed in Section 3.1.

In addition to the nine TSS techniques from [5], which were orig-
inally developed to improve KNN, we also consider two filter TSS
techniques that were specifically developed for SVMs. These are
discussed in Section 3.2.

3.1. Editing filter TSS methods

A basic method is the Edited Nearest Neighbor (ENN, [14])
algorithm, which considers every instance in the training set
and removes it whenever the nearest neighbor rule classifies it
incorrectly using the remaining instances as training data. Many
methods are derived from ENN, including:

• ENN with Estimation of Probabilities of Threshold (ENNTh, [15]):
proceeds like ENN, except that the removal criterion is based on
probabilities.

• All-KNN ([16]): applies ENN for different numbers of neighbors
and removes an instance whenever any of the ENN runs marked
an instance for removal.

• Modified ENN (MENN, [17]): takes into account the fact that
multiple instances can be at the same distance from the target
instance.

• Nearest Centroid Neighborhood Edition (NCNEdit, [18]): is very
similar to ENN, but uses an alternative definition to determine
the neighbors of an element based on centroids.

• Multi-Edit [19]: randomly divides the training data in blocks,
applies ENN to them and merges the resulting sets.

We also consider three methods that are not derived from ENN:

• Relative Neighborhood Graph (RNG, [20]): constructs a proxim-
ity graph and removes instances that are misclassified by the
neighbors in the graph.

• Model Class Selection (MOCS, [21]): uses a feedback system to
incorporate knowledge about the dataset in a tree-based classi-
fier.

Download English Version:

https://daneshyari.com/en/article/494846

Download Persian Version:

https://daneshyari.com/article/494846

Daneshyari.com

https://daneshyari.com/en/article/494846
https://daneshyari.com/article/494846
https://daneshyari.com

