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a  b  s  t  r  a  c  t

In this  study,  an  approach  based  on  artificial  neural  network  (ANN)  was  proposed  to  predict  the  experi-
mental  cutting  temperatures  generated  in orthogonal  turning  of  AISI  316L  stainless  steel.  Experimental
and  numerical  analyses  of the  cutting  forces  were  carried  out to numerically  obtain  the  cutting  tem-
perature.  For  this  purpose,  cutting  tests  were  conducted  using  coated  (TiCN  +  Al2O3 + TiN  and  Al2O3)
and  uncoated  cemented  carbide  inserts.  The  Deform-2D  programme  was  used  for  numerical  modelling
and  the  Johnson–Cook  (J–C) material  model  was  used. The  numerical  cutting  forces  for  the  coated  and
uncoated  tools  were  compared  with  the  experimental  results.  On  the  other  hand,  the  cutting  tempera-
ture  value  for  each  cutting  tool  was  numerically  obtained.  The  artificial  neural  network  model  was  used
to predict  numerical  cutting  temperatures  by  means  of the  numerical  cutting  forces.  The  best  results  in
predicting  the cutting  temperature  were  obtained  using  the  network  architecture  with  a  hidden  layer
which  has  seven  neurons  and  LM  learning  algorithm.  Finally,  the  experimental  cutting  temperatures
were  predicted  by entering  the  experimental  cutting  forces  into  a formula  obtained  from  the  artificial
neural  networks.  Statistical  results  (R2, RMSE,  MEP)  were  quite  satisfactory.  This demonstrates  that  the
established  ANN  model  is a  powerful  one  for predicting  the  experimental  cutting  temperatures.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Stainless steel is a material which has rapidly become
widespread in recent years. This material can be used in a variety
of areas as it resists corrosion excellently, can be used at low and
high temperatures, is easy to shape and has a pleasant aesthetic
appearance. The major factors which affect the machinability of
this kind of material negatively are its lower thermal conductiv-
ity and the presence of strengthening elements such as chrome,
nickel and molybdenum in its chemical composition. Because of
chip removal process is a complex process, a theory that fully
discloses the cutting process is not easy to suggest. Therefore some-
times, it is not possible to measure experimentally each case which
occurs during cutting. Especially, finite element method is a numer-
ical analysis method that is widely used to predict some data (such
as cutting force and cutting temperature) during cutting. How-
ever, finite element solutions result in more realistic and closer
to the experimental data depend on to used material model and
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friction conditions being close to the friction conditions in the
actual cutting conditions [1]. When the studies done in this regard
subject to an overall evaluation, it will be seen that Johnson–Cook
material model used is more suitable in simulations of the cut-
ting processes [2–4] because, Johnson–Cook material model is able
to express analytically the material behaviour at high strain rates
and temperatures. Umbrello et al. [5], in their study, investigated
the variation of the cutting temperature and the cutting forces
using the five different Johnson–Cook material models for AISI 316L
stainless steel. The closest results to cutting temperature and the
cutting force values that experimentally measured, material model
developed by Tounsi et al. [6] was prepared. For this reason in this
study, this material model was  used.Since the metal cutting pro-
cess is complicated, it is not easy to offer a theory which precisely
clarifies the procedure of cutting. While many studies performed
in this area exist, there still are differences between theory and
practice. Many experimental and numerical studies to identify the
optimal conditions for the cutting process have been carried so far
[7–11]. Yaldiz et al. [12] dealed with a comparison of experimental
results and consistent fuzzy rule-based model for estimating the
cutting forces in turning. In cutting experiments, AISI 1040 steel
was used as the workpiece material. Feed force, radial force and
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Nomenclature

A yield stress (MPa)
o output value
Al2O3 aluminum oxide
P number of pattern
ANN artificial neural network
R2 absolute fraction of variance
B hardening modulus (MPa)
RMSE root mean square error
BP back propagation
SCG scaled conjugate gradient learning algorithm
C strain rate sensitivity parameter
T temperature of work material (◦C)
Ct cutting tools
Tr room temperature (◦C)
Fc main cutting force (N)
Tm melting temperature of work material (◦C)
Ff feed force (N)
Tc cutting temperature (◦C)
f feed rate (mm/rev)
TiCN titanium carbo-nitride
ft transfer function
TiN titanium nitride
h heat transfer coefficient of work material

(kW/m2 ◦C)
t target value
ij processing elements
V cutting speed (m/min)
kp shear flow stress of chip (MPa)
wij the weights of the connections between ith and jth

processing elements
LM Levenberg–Marquardt learning algorithm
wbi the weights of the biases between layers
m shear friction factor
Xj the output of the jth processing element
M thermal softening coefficient
�̄ yield stress (MPa)
MEP  absolute mean error percentage (%)
˙̄ε strain rate (sn−1)
NETi the weighted sum of the input to the ith processing

element
˙̄εo reference strain rate (sn−1)
n strain hardening index
ε̄ equivalent plastic strain rate (sn−1)
np number of processing elements in the previous layer
� shear stress at the tool–chip interface (MPa)

main cutting force were measured for three combinations of cut-
ting speeds, feed rates and depth of cuts. The difference between
experimental and predicted results was obtained as around 99.6%.
These results demonstrate the potential of this approach for mon-
itoring the cutting forces. Ucun and Aslantas [13] conducted the
numerical simulations to determine the effect of coating type on the
cutting forces, the tool stresses, and temperatures. The Lagrangian
thermo-viscoplastic cutting simulation of AISI 4340 steel was con-
ducted using two different coating types (TiCN + Al2O3 + TiN and
Al2O3) and uncoated carbide tool having same geometry. The pre-
dicted results indicated that Al2O3 coated tool showed minimum
tool temperature value due to its decreasing thermal conductiv-
ity with increasing temperature and that the tool stress within the
coating increases along the thickness with increasing cutting speed
and feed rate.

Since the design of cutting tools, coating characteristics, the
properties of workpieces and the cutting conditions are influen-
tial on the cutting temperature, the experimental and numerical
approaches are not very appropriate for predicting it. In addi-
tion, as experimental studies require a lot of time and experiment
sets are expensive, different approaches such as the artificial neu-
ral network which precisely predicted desired values have been
preferred in studies in the recent years. The artificial neural net-
work, which has been developed taking the working principle
of the human brain as an example, can learn through examples
and solve nonlinear problems. The ANN can be used in solving
problems which cannot be modelled mathematically or are very
difficult. The nonlinearity of artificial neurons allows for the ANN
to be applied to many problems [14]. Nalbant et al. [15] conducted
orthogonal cutting experiments for AISI 1030 steel at different
parameters with coated (PVD-CVD coated cemented carbide) and
uncoated inserts. The effects of cutting method, coating material,
feed rate and cutting speed on the surface roughness of the work-
piece are investigated. Surface roughness values are predicted by
use of an ANN approach. Eventually the surface roughness values
reached through the ANN (R2 = 0.99985 for the training data and
R2 = 0.99983 for the testing data) are found to be very close to the
results obtained by the experimental study. Kurt [16] investigated
the variation by cutting parameters of the tool stresses occurring
during the machining of the nickel-based super alloy Inconel 718.
The cutting forces were measured experimentally and the stress
distributions on the cutting tools were analysed by use of the finite
element method (ANSYS). In addition, an ANN model is developed
for predicting all cutting tool stresses. The R2 value after the ANN
training is very close to 1. Studies in the literature demonstrate
that the ANN is a very powerful modelling technique [17,18]. Panda
et al. [19] predicted flank wear in drilling using back propagation
neural network (BPNN) and radial basis function network (RBFN).
It has been observed from the present study that both BPNN and
RBFN can predict the drill flank wear reasonably well. In addition
to BPNN can predict the wear more accurately compared to RBFN.
While the error in prediction is more in RBFN compared to that
in the case of BPNN, RBFN can learn the pattern much faster com-
pared to BPNN and could be used advantageously in online tool
wear monitoring. Ravi et al. [20] presented the detailed study of
thermally enhanced machining (TEM) of high chrome white cast
iron (HCWCI) in which the effect of cutting parameters and surface
temperature of the stock material on machinability characteristics
(cutting forces and surface roughness) are analyzed using ANOVA
and the ANN. The results show that TEM causes easy shearing of the
material, leading to the reduction in cutting forces with expected
improvement in tool life and surprisingly good surface finish. The
confirmation tests suggest both second-order regression and ANN
which are better predictive models for quantitative prediction of
TEM of HCWCI, and ANN is more accurate of the two.

The objectives of this study are to predict experimental cutting
temperatures using numerical cutting temperatures generated by
means of FEM at different combinations of cutting tools, cutting
forces and cutting parameters and to obtain experimental cutting
temperatures using experimental cutting forces and the mathemat-
ical model derived by ANN.

2. Experimental details

2.1. Workpiece and cutting tools

Orthogonal turning tests using AISI 316L steel (see Table 1) as
the workpiece material were carried out on a Johnford T35 CNC
lathe with 10 kW spindle power and a maximum spindle speed of
6500 rpm (Fig. 1). Bars with 60.3 mm diameter and 240 mm cutting
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