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a b s t r a c t

Training support vector machines (SVM) consists of solving a convex quadratic problem (QP) with one
linear equality and box constraints. In this paper, we solve this QP by a primal–dual approach that
combines the adaptive method with an interior point method. To initialize the algorithm, a procedure of
an interior point method is used to construct an initial support. The proposed approach provides an
efficient implementation of a new algorithm that exploits the advantage of the adaptive method for
training SVM problems. It is based on the principle of the support and the suboptimality estimate. Ex-
perimental results confirm the efficiency of our approach over state-of-the-art SVM algorithms such as
SMO, LIBSVM and SVMLight for medium-sized problems.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

During more than ten years, several researches on machine
learning have been focused on Support Vector Machines [1–4].
This concept has a high generalization performance that is due to
its strong theoretical foundation based upon statistical learning
theory [1]. The idea of the SVM is based on the notions of large
margin and kernel functions. It aims to find a hyperplane that
separates, in a best way, the examples of a sample into several
classes.

The SVM has shown excellent performance for a wide class of
applications, such as information processing [5], handwritten digit
recognition [6], face recognition [7], financial engineering [8],
database analysis [9] and bioinformatics [10].

Training an SVM classifier is reduced to a convex quadratic
minimization problem with one linear equality constraint and box
constraints. Several approaches have been proposed to solve this
kind of problems. The most efficient ones are the decomposition
methods and the active set methods. The basic idea of these
methods is similar. It consists of splitting the original problem into
subproblems that are easier to solve. However, the first approach,
also called working set [11], operates by optimizing a fixed subset
of the variables per iteration to minimize the training time. This
technique has the advantage of dealing with large datasets. An-
other advantage of the decomposition methods consists of their
limited use of memory. Efficiently implemented decompos-
ition algorithms have been introduced such as SMO (Sequential

Minimal Optimization) described in [12], it is an extreme case of
the decomposition methods which solves a two-variables problem
at each iteration. There is also LIBSVM [13] that is considered as an
SMO-type decomposition method, it modifies a fixed size subset of
variables per iteration. In addition to those, SVMlight [14] is based
on the decomposition idea introduced in [15], it has the same
principle of fixed size working set and it uses the heuristic of
shrinking. However, since only few components are changed in
each iteration, then the decomposition methods suffer from the
slow convergence.

The second approach is shown to be suitable when the Hessian
is dense [16,17] and the solution is sparse [18], that is generally the
case of the SVM problems. The active set method is also re-
commended for both small and medium-sized problems [19]. Its
advantage is the ability of performing incremental/decremental
training [20], improved accuracy [16] and improved stability and
convergence [18]. However, from existing active set implementa-
tions, in the SVM-QP introduced in [16], the subproblem solved in
each iteration can be singular and thus the convergence is not
always ensured. Another active set algorithm is SVM-RSQP de-
scribed in [17]. It maintains the non-singularity of the inner pro-
blem compared to the dual active set method presented in [21] for
SVM which does not need to compute the inverse of a matrix.

The simplex method [22] solves the quadratic problems and it
is used for SVM training [16]. The revised simplex method [23] is
also used to improve the training of the SVM problem [17].

The adaptive method [24–26] is intermediate between active
set and interior point methods. It belongs to the class of primal–
dual methods which are based on the primal and dual information
for solving convex quadratic problems with bounded variables. It
takes into account the specificities of the constraints and thus
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treats them as they arise, without trying to transform them. This
avoids to extend the dimensions of the problem and therefore
preserves space in the memory. The principle of this method is to
use an adaptive metric that changes all non-optimal indices at the
same time, thus generalizing that of the simplex method. Indeed,
the adaptive method is based on the notion of the support which
is a more general concept than the basis concept in linear pro-
gramming. Therefore, the feasible solution and the support can be
constructed independently from each other compared to a basic
feasible solution. We notice that a support feasible solution can be
an extreme point, a boundary point or an interior point contrary to
a basic feasible solution.

In this paper, we propose to solve the SVM problems by using
the adaptive method of quadratic programming. The application of
this method is new. By adapting this method to the structure of
SVM problems, we produce an effective new approach. The de-
duced algorithm is iterative and it consists of two phases. The first
phase is inspired from the affine scaling method that is one of the
simplest interior point methods [27]. It deals with the construction
of an initial support. The second phase is based on the application
of methods [26,28,29] for determining an optimal solution. Each
iteration of this phase consists of computing a descent direction
and a step along this direction to improve the value of the ob-
jective function. If the current feasible solution is not optimal, we
change the support in such a way that the new support matrix is
nonsingular.

The main idea of this method is to change all the non-optimal
indices at the same time, accelerating the convergence of the al-
gorithm, while the most common approach to training SVM pro-
blems is to allow only a small number of variables to be changed.

Another particularity of our algorithm is that it uses the sub-
optimality estimate which allows us to stop the algorithm with a
desired accuracy. This could be useful in practical applications. In
addition, our algorithm starts with one index when the other
methods begin with a subset of indices.

The proposed method is implemented in Matlab. We compare
its performances with those of the popular SVM training algo-
rithms, like SMO, LIBSVM and SVMLight, using several selected
benchmark datasets from the UCI Machine Learning repository
[30].

This paper is organized as follows: in Section 2, we present the
modeling of classification problem by SVM as a convex quadratic
minimization problem, then we define its parameters and present
the KKT optimality conditions. In Section 3, we give some defini-
tions and present the suggested algorithm. Experimental results
for illustration purpose are presented in Section 4. Finally, in the
last section, we conclude the paper and give some perspectives.

2. SVM classification

We are given a training example ( ) ∈ = { … }x y i I n, , 1, 2, ,i i ,
where ∈ { − + }y 1, 1i is the class of the example R∈xi

p, n is the
number of training examples and p is the number of features of
each example. The binary SVM classification consists of solving the
following constrained minimization problem:
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where the nonlinear mapping ϕ projects each example R∈xi
p in

a transformed feature space F with a larger dimension if the ex-
amples of the initial sample are not linearly separable by a simple
hyperplane of equation ′ + =w x b 0. By this projection, the new
data sample ϕ( ( ) ) ∈x y i I, ,i i , becomes linearly separable by a hy-
perplane in the space F and the training sample may be separable
by a nonlinear surface in the original input space. The real b is
called the bias and ∈w F is the weight vector of the optimal hy-
perplane. The symbol (') represents the transposition operation.
The surplus variable ξi represents the error associated with the
margin of the ith example relative to the separating hyperplane.
The regularization parameter C controls the misclassification of
the sample, and it is used to penalize the variables ξi. A high value
of C corresponds to assign a large penalty to errors.

Because of the possibility of a very large vector ∈w , one
usually solves the dual of the primal problem (1), that is equivalent
to the following quadratic problem:

α α α α( ) = ′ − ′ ( )α
L D emin , 2a

1
2

α′ = ( )y 0, 2b

α≤ ≤ ∈ ( )C i I0 , , 2ci

where α α α= ( ) = ( ∈ ) ∈I i I,i n is the vector of Lagrange multi-
pliers associated to the constraints (1b) of the primal problem.
Here, e is an n-vector of ones and y is an n-vector, with

= ( ) = ( ∈ )y y I y i I,i . The matrix D, defined by its elements
= ( )d y y k x x,ij i j i j , is square of order n, symmetric and positive

semidefinite, since the kernel function k, checking ϕ ϕ( ) = ( )′ ( )k x x x x,i j i j ,
respects the condition of Mercer [31].

2.1. KKT optimality conditions

The optimality conditions of Karush–Kuhn–Tucker (KKT) are
crucial because they allow us to characterize the solutions and
establish a strategy to construct algorithms for solving the pro-
blem. Since the primal problem (1) and its equivalent dual (2) are
convex, then the KKT first order optimality conditions are both
necessary and sufficient for the optimality of a feasible point α.

Using the Lagrangian duality theory [22], the Lagrange function
associated with the dual problem is the following:

α ξ α α α α α ξ α( ) = ′ − ′ + ′ − ′ + ′( − ) ( )G b s D e by s Ce, , , , 3
1
2

where the nonnegative n-vector s represents the slack variables.
The KKT optimality conditions of the previous two problems

are:
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