Neurocomputing 211 (2016) 129-142

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Building support vector machines in the context of regularized least

squares

@ CrossMark

Jian-Xun Peng, Karen Rafferty *, Stuart Ferguson

The School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 19 August 2015
Received in revised form

8 March 2016

Accepted 21 March 2016
Available online 8 June 2016

Keywords:

Data classification
Support vector machines
Regularized least squares
Fast training algorithm
Cholesky decomposition

This paper formulates a linear kernel support vector machine (SVM) as a regularized least-squares (RLS)
problem. By defining a set of indicator variables of the errors, the solution to the RLS problem is re-
presented as an equation that relates the error vector to the indicator variables. Through partitioning the
training set, the SVM weights and bias are expressed analytically using the support vectors. It is also
shown how this approach naturally extends to sums with nonlinear kernels whilst avoiding the need to
make use of Lagrange multipliers and duality theory. A fast iterative solution algorithm based on Cho-
lesky decomposition with permutation of the support vectors is suggested as a solution method. The
properties of our SVM formulation are analyzed and compared with standard SVMs using a simple ex-
ample that can be illustrated graphically. The correctness and behavior of our solution (merely derived in
the primal context of RLS) is demonstrated using a set of public benchmarking problems for both linear
and nonlinear SVMs.
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1. Introduction

Support vector machines (SVMs) are a set of empirical data
modeling techniques that is firmly grounded in the framework of
VC theory [1], a specific approach to computational learning the-
ory. The SVM was originally developed for binary data classifica-
tion problems. Conceptually, a machine maps the input space to a
so-called feature space through some non-linear mapping chosen a
priori. The feature space is of higher dimension than the input
space. In this feature space a linear decision surface is constructed
based on the structural risk minimization (SRM) principal: an
upper bound on the expected risk (the expectation of the test error
for a machine on an unseen point) is minimized by maximization
of the margin [2]. The margin refers to the distance between the
two parallel hyperplanes that bound the training points of the two
classes, respectively. The hyperplane that lies midway between the
two bounding hyperplanes is called the decision hyperplane, and
the training points that determine the two parallel bounding hy-
perplanes are referred to as the support vectors.

It was shown [2] that if the training vectors are separated without
errors by an optimal hyperplane the expectation value of the prob-
ability of committing an error on a test example is bounded above by
the ratio between the expectation value of the number of support
vectors and the number of training vectors. Particularly, this bound
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does not explicitly contain the dimensionality of the feature space. It
follows from this bound, that if the optimal hyperplane can be con-
structed from a small number of support vectors, relative to the
training set size, then the generalization ability will be high even in an
infinite dimensional feature space.

This optimal margin algorithm is generalized by [3] to non-
separable data sets by the introduction of non-negative slack
variables as a measurement of the misclassification errors in the
statement of the optimization problem, and by using a structural
objective function with a penalty term on the training errors. For a
sufficiently large penalty parameter C, the hyperplane is chosen so
that it minimizes the number of errors on the training set, while
the rest of the training points are separated with maximal margin;
if the training data can be separated without errors, then the hy-
perplane obtained in the procedure coincides with the optimal
margin hyperplane.

Compared with traditional methods employed by conventional
neural networks, the SRM principle has been shown to be superior
because it not only minimizes the error on the training data [4], but
also minimizes the capability of the model [5]. This equips SVM with
a greater ability to generalize, which is the goal in statistical learning.
Experimental studies have demonstrated the competitive perfor-
mance of SVMs in a range of application fields [6-9].

Typically, constructing a SVM involves a constrained quadratic
(or convex) optimization problem. In the majority of textbooks and
articles introducing SVMs, instead of directly solving the primal
problem, a dual of the problem is formulated using Lagrange
multipliers [3,10-12]. There are two reasons for doing this [10]:
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(a) duality theory provides a convenient way to deal with the
constraints and (b) with the Lagrange reformulation of the pro-
blem, the training data will only appear (in the actual training and
test phases) in the form of dot products between input vectors.
This is a crucial property which allows us to generalize SVMs to
the nonlinear case. In addition, most popular algorithms and ex-
isting toolboxes (for example, interior point method [13] and the
sequential minimal optimization (SMO) [14] algorithm) formulate
their solution in the dual. This gives the strong impression that
this is the only possible way to construct a SVM, particularly for
SVMs with nonlinear kernels. There has also been quite a lot of
interest in studying systems that have particular properties, for
example Huang et al.'s [15] work on sparse learning and Li et al.'s
[16] sparse least squares. However, there has been increasing in-
terest in constructing SVMs directly in the primal. Fung and
Mangasarian [17] formulated a primal least-square version of the
SVM, which had been originally proposed in the dual [18]. Ko-
marek [19] applied conjugate gradient schemes to logistic re-
gression for data classification. Zhang et al. [20] proposed an al-
gorithm for linear L1-SVMs that works by approximating the L1-
loss function by a sequence of smooth modified logistic regression
loss functions, this is followed by sequentially solving smooth
primal modified logistic regression problems using nonlinear
conjugate gradient methods. However, all the inequality con-
straints are replaced by equality constraints in least squares SVM.
A particular drawback of that method is its inability to exploit the
sparsity property of SVMs in which only the support vectors de-
termine the final solution. To overcome this shortage of the least
squares SVM, a pruning method was proposed based on the fact
that support values reveal the relative importance of each of the
training data points, where a small number of points, e.g., 5% in
the training set [21], that have the smallest values in the sorted
support vector values spectrum, are removed in each training loop,
until some user-defined performance index degrades.

Some promising primal algorithms have also been studied for
standard linear SVMs [22-24], and implemented in toolboxes for
linear SVMs, for example, in LIBLINEAR [25]. All of these algo-
rithms are based on the fact that, for linear SVM, the feature space
is the same as the input space, the normal vector to the separating
hyperplane is thus explicitly presented in the linear SVM. How-
ever, for SVMs with nonlinear kernels, where some nonlinear map
from the input space to the feature space exists, the map itself and
many of its properties are unknown [26]. What is known is, a gi-
ven kernel function involving a dot product in the feature space, a
concept introduced by [27], thus the normal is not explicitly pre-
sent in the final discriminative function of nonlinear SVMs again.
This makes it difficult to apply primal solution algorithms in
nonlinear kernel cases.

Chapelle [28] showed that when the goal is to find an ap-
proximate solution, primal optimization is superior because it is
focused on minimizing what we are directly interested in: the
primal objective function. Motivated by this, a Newton method is
applied to the primal problem for both linear and nonlinear cases.
For the nonlinear case, the optimal solution to the SVM is ex-
pressed by a linear combination of the kernel functions evaluated
in all the training points based on the representer theorem of [29].
Given this linear combination solution, and using the representing
property of the kernel, the problem is thus converted into one of
optimizing the linear coefficients in the combination. This requires
the full kernel matrix to be invertible (positive definite), given that
the full kernel matrix is a symmetric matrix formed by pair-wise
point inner products or kernel evaluations on the full training set.
An iterative technique, IRWLS [30,31], based on re-weighed least
squares produced the fastest algorithm of its time. The IRWLS
approach was subsequently proved to converge to the SVM solu-
tion [32]. Since then there has been continued interest in primal

and iterative least squares approaches to finding the best SVM
solution [33-35].

Recently, particularly in the machine learning arena, recursive
and weighted least squares has attracted interest in the context of
twin support vectors, [36] provide an overview or nonparallel
hyperplane algorithms and [37,38] illustrate recent work on twin
support vector machines.

The goal of this paper is to show how a primal SVM algorithm
can be constructed that removes some of the caveats on other
formulations of primal solutions. Most notably: we use kernel
matrices that need only be positive semi-definite and suggest a
procedure that overcomes the lack-of-sparseness shortage of least
squares SVMs. Those points without violations are not presented
in the solution. Our SVM in this paper is different from the least
squares SVM [18] in that our SVM is derived merely in the context
of RLS, while the least squares SVM were originally derived in the
dual. Secondly, the least squares SVM replaces the inequality
constraints with equalities while the solution proposed in this
paper minimizes the violations without that replacement.

Our formulation begins as a regularized least squares (RLS)
problem as was done by [28]. LSSVM only needs to solve a linear
equation set rather than dealing with a quadratic programming
problem, by using equality constraints instead of inequality ones
and a least squares loss function, which greatly reduces the
computational complexity [39]. The training set is partitioned into
two parts: the one includes those points that are bounded by the
two class-bounding-hyperplanes and another one includes those
points that are unbounded. The later is referred to as the support
vector set hereafter. Accordingly, the error vector is partitioned into
two parts. The main contribution of this paper is the derivation of
the optimal solution with the use of only some matrix operations
for the partitioned error vector and merely in the context of the
RLS. Instead of giving the linear combination form of the optimal
solution in advance as was done by [28], our optimal solution is
derived and can be expressed as a linear combination of the inner
products of the support vectors with an input point. This approach
not only overcomes the drawback of the invertability requirement
of the kernel matrix, but also makes it natural to generalize to
cases of SVMs with nonlinear kernels.

In Section 2, an SVM with linear kernel is formulated as an
unconstrained minimization problem with the L2-loss.

The main details of our approach are presented in Sections
3 and 4. Firstly Section 3 expresses the solution to the problem as
an equation with regard to the error vector and a set of indicator
variables. Then in Section 4, it is shown how the error vector may
be partitioned into two parts and how the solution to the linear
SVM is expressed as a linear combination of inner products of the
support vectors with an input point. How the solution may be
generalized to cases of nonlinear kernels is discussed in compar-
ison with standard SVM. In Section 5 an iterative algorithm to
solve our SVM formulation is described, this is based on Cholesky
decomposition (an approach also favored by [40]) and offers the
potential to contribute when it comes to develop a wider popu-
lation of problems with nonlinear kernels. The accuracy of the
method is examined in Section 6 by comparing the algorithm's
output with that from some existing SVM software packages.
Section 7 draws a few conclusions about our algorithm.

2. Linear support vector machines

This section briefly reviews the SVM and introduces the nota-
tion to be used in the paper.

Given a data set of N point-label pairs {(X, y,), k=1, ..., N},
referred to as the training set, each point is represented in a row
vector X € R*" to which a label either +1 or -1, ie,
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