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a b s t r a c t

Hashing is an attracting technique for fast retrieval due to its low storage and computation costs. By
hashing, each high-dimensional vector is mapped into a low-dimensional binary code vector and
retrieval is performed in the Hamming space. Recently several hashing methods have been proposed,
among which, supervised hashing methods have shown great performance by incorporating the
supervision information. However, most previous supervised methods simply focused on the pairwise
label information of data, and ignored the structure information and relationship within data. To tackle
this problem, we propose to learn binary codes by explicitly taking into account class semantic relat-
edness. Specifically, a set of binary codes is computed according to the intrinsic class similarities in data
and serves as the optimal class representations. We show that, by mapping images onto the optimal
representation of their corresponding classes, our proposed method outperforms several other state-of-
the-art supervised hashing methods in image retrieval on three large-scale datasets.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the explosive growth of images on the web, nearest
neighbor search has attracted great attention in computer vision,
machine learning, information retrieval and related area
[5,16,8,37,18,17,19,48,38]. When the images are high dimensional,
searching efficiently becomes challenging and crucial. Two main-
stream retrieval approaches are tree based and hashing based
methods. With tree based methods, searching is speeded up by
exploiting spatial partitions of data space via various tree struc-
tures. Decision trees [27] and kd-trees [23] are two such methods.
However, storage and time consumption grow exponentially with
dimension growing, which lead to an inefficient search.

To search high-dimensional data efficiently, hashing becomes a
promising approach. Hashing methods map the high-dimensional
vector onto a low-dimensional binary code vector, and the map-
ped binary codes are used for efficient search. Besides search,
binary code has also been widely applied in various vision appli-
cations [21,20,22]. Existing hashing techniques can be divided into
two categories: data-dependent and data-independent. Locality
Sensitive Hashing (LSH) [5] is one of the most popular data-

independent methods. In LSH, the random hyperplane-based hash
function involves a random projection sampled from a Gaussian
distribution. In addition to Euclidean distance, Developed LSH
methods employed several other distance measures such as p-
norm distances [2], the Mahalanobis metric [12], and kernel ver-
sions [11,28]. The LSH family, however, needs long binary codes for
achieving high search performances, which lead to a high storage
consumption.

Instead of generating hash functions randomly, data-dependent
hashing methods learn similarity-preserving binary code from
training data. Various data-dependent methods have been pro-
posed in the literature. Representative methods in this category
can be divided into two parts: supervised methods and unsu-
pervised methods. Unsupervised methods use the sole unlabelled
data to generate binary codes. For example, PCA Hashing [47], ITQ
[6], Isotropic hashing [9], Spectral Hashing (SH) [41] and Asym-
metric Inner Product Binary Coding (AIBC) [29], are some widely
used methods. These unsupervised methods, however, do not
consider the supervision information. Therefore many supervised
methods are proposed to handle this issue such as the supervised
minimal loss hashing (MLH) [24], kernel-based supervised hashing
(KSH) [15], supervised discrete hashing (SDH) [30], FastHash [13],
graph cuts coding (GCC) [4] etc.

A few hashing methods propose to generate the hash functions
in the kernel space as the extension of linear hashing methods,
such as binary reconstructive embeddings (BRE) [10], KLSH [11].
Recently, it is shown that compact similarity-preserving hash
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codes can be obtained by considering the non-linear manifold
structure. One of the most popular methods in this category is
spectral hashing [41], which generates hash codes by solving the
relaxed mathematics program that is similar to Laplacian eigen-
maps [1]. As the extension of SH, anchor graph hashing (AGH) [16]
use the anchor graph affinity, which makes training and the out-
of-sample extension problem tractable for large-scale dataset.
Inductive manifold hashing (IMH) [31,32] proposed a new fra-
mework for generating nonlinear hash functions. Other related
methods include the multidimensional spectral hashing (MDSH)
[40] and DGH [14].

In general, supervised methods outperform unsupervised
methods due to the usage of supervision information of the
training data. In SSH, a matrix S is defined incorporating the
pairwise labeled information. In SDH, the label information is used
for classifying binary codes. However, most existing supervised
methods simply focus on the label information and pay no
attention to the relationship between classes. We believe that the
semantic relationship between classes gives more detailed and
specific information than label information, and improve the
retrieval performance.

In this work, we propose a new method to compute the binary
codes for classes as the optimal representations, assuming that an
optimal representation can be representative for its corresponding
class and reflect the relationship with other classes. By considering
the semantic similarity between classes, a matrix is constructed to
depict the semantic similarity between classes. Thus, the optimal
class representations are computed according to this matrix. Our
contributions are as follows:

1. We propose a new supervised hashing method that each class is
assigned to an optimal binary code as their class representation,
considering that optimal class representations preserve
semantic similarity between classes well.

2. We construct a semantic relatedness matrix to depict the
semantic similarity, and then a set of binary codes is computed
to preserve the similarity in the Hamming space. The binary
codes of data are expected to be close with their corresponding
optimal class representation. After solving a straightforward
optimization problem, the binary codes and hash functions are
learned efficiently.

2. Learning the optimal class binary representations

Suppose that we have n samples X ¼ fxigni ¼ 1. Our aim is to get a
set of binary codes B¼ fbigni ¼ 1Af�1;1gn�L to preserve their
semantic similarities well. Here we want to get the optimal class
representations which can capture the semantic similarities
between classes, and then the set of binary codes B is learnt
according to the corresponding optimal class representations.

For c classes, we compute a matrix P ¼ ½pT1; pT2;…; pTc �
Af1; �1gc�L, and every row pi

T in P is the optimal class repre-
sentation assigned to class i. In this and next sections, we will give
the details about how to compute the optimal class representa-
tions and learn the binary codes of data according to the optimal
class representations.

2.1. Class semantic relatedness

One important property of optimal class binary representations
is that the class representation of semantically similar classes
should be more close and dissimilar classes should be more far. In
other words, the binary codes of two similar classes share more
common bits, and two dissimilar classes share less common bits.

In [49], the authors designed the semantic relatedness matrix to
measure the similarity between classes. Thus, firstly we should
compute the semantic relatedness matrix S to depict the similarity
between classes. Semantic relatedness matrix S measures simi-
larity between classes. Suppose there are two classes X i ¼ f
XðiÞ
1 ;…;XðiÞ

jX i j g and X j ¼ fXðjÞ
1 ;…;XðjÞ

jX j j g. The semantic similarity
between X i and X j can be defined in many ways, such as Hausdorff
distance, match kernel [7,25], divergence between probability dis-
tributions [26]. In this work, we use some match kernel in [7], and
semantic similarity between X i and X j that can be expressed as
follows:

Sij ¼
1

jX i j
1

jX j j
XjX i j

p ¼ 1

XjX j j

q ¼ 1

KðXðiÞ
p ;XðjÞ

q Þ ð1Þ

where Kð�; �Þ is a Mercer kernel and j � j is the cardinality of the
class X i.

The semantic relatedness between X i and X j is the sum of
KðXðiÞ

p ;XðjÞ
q Þ, which could be computed inefficiently for large-scale

dataset. In this work, we adopt a simple yet efficient linear kernel,
and show that the semantic relatedness matrix can be computed
in a very simple and compact way:

Sij ¼
1

jX i j
1

jX j j
XjX i j

p ¼ 1

XjX j j

q ¼ 1

KðXðiÞ
p ;XðjÞ

q Þ ¼ 1
jX i j

1
jX j j

XjX i j

p ¼ 1

XjX j j

q ¼ 1

XðiÞ
p T

� XðjÞ
q ¼ 1

jX i j
XjX i j

p ¼ 1

XðiÞ
p T

 !
� 1

jX j j
XjX j j

q ¼ 1

XðjÞ
q

 !
¼X i

T � X j ð2Þ

Where X i and X j are the mean vectors of X i and X j.
From problem (2), we can see that the similarity between X i

and X j is the inner product of the mean vectors of two classes,
which can be computed easily even for the large-scale dataset
such as ImageNet.

Sij depicts the similarity between class X i and class X j. When Sij
is large, we want the inner product of Pi and Pj is large, otherwise
small. Hence, the problem can be formulated as follows:

max
Xc
i ¼ 1

Xc
j ¼ 1

PT
i PjSij ¼ trðPPT � SÞ ¼ trðPTSPÞ

s:t: PAf1; �1gc�l ð3Þ
Where trð�Þ is the trace norm, � is the Hadamard product of two
metrics, and c is the number of classes.

2.2. Orthogonal binary codes

Spectral Hashing [41] shows that requiring the bits to be
uncorrelated leads to the maximal information. So we add the
orthogonality constraints to class representations for enriching the
information of class representations. Thus, the class representa-
tions can be computed as follows:

min
P

1
l
PTP� I

����
����
2

ð4Þ

where l is the length of optimal binary codes.

2.3. Final formulation

Combining (3) and (4) together, we have the following for-
mulation for learning optimal binary codes:

min
P

1
l
PTP� I

����
����
2

�αtrðPTSPÞ

s:t:PAf�1;1gc�l ð5Þ
The above problem can be reformulated as following by making
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