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a  b  s  t  r  a  c  t

This paper  deals  with  the  problem  of parameter  estimation  in the  generalized  Mallows  model  (GMM)
by  using  both  local  and  global  search  metaheuristic  (MH)  algorithms.  The  task  we  undertake  is  to  learn
parameters  for  defining  the  GMM  from  a dataset  of  complete  rankings/permutations.  Several  approaches
can  be  found  in  the literature,  some  of  which  are  based  on  greedy  search  and branch  and  bound  search.
The  greedy  approach  has  the  disadvantage  of  usually  becoming  trapped  in  local  optima,  while  the branch
and  bound  approach,  basically  A* search,  usually  comes  down  to approximate  search  because  of memory
requirements,  losing  in  this  way  its guaranteed  optimality.  Here,  we  carry  out a  comparative  study  of
several  MH algorithms  (iterated  local  search  (ILS)  methods,  variable  neighborhood  search  (VNS)  methods,
genetic  algorithms  (GAs)  and  estimation  of distribution  algorithms  (EDAs))  and  a tailored  algorithm  A*

to address  parameter  estimation  in GMMs.  We  use 22  real  datasets  of  different  complexity,  all  but  one
of which  were  created  by the  authors  by  preprocessing  real raw  data.  We  provide  a  complete  analysis  of
the  experiments  in  terms  of accuracy,  number  of iterations  and  CPU  time  requirements.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Although the problem of dealing with permutations is a long-studied topic, there
has  been remarkable interest in this field from the statistics and machine learning
community in the last two decades. One reason for this is the increasing presence
of problems whose basic data are rankings, which are represented as permutations
(e.g. recommender systems, combinatorial optimization, preferences, etc.).

Of the different ways of dealing with permutations/rankings in a compact
manner, probabilistic models have received more attention than others [14].
Undoubtedly, the most famous probabilistic model for permutations is the Mal-
lows model (MM)  [32], introduced by C.L. Mallows in the late fifties. This model
has  recently experienced a noteworthy revival, and has been applied to problems
of  different nature: combinatorial optimization [5], supervised classification [7],
preference modeling and collaborative filtering [47], content modeling [6], etc.

The Mallows distribution is a distance-based ranking model which has a cer-
tain  resemblance to the Gaussian distribution. It also belongs to the exponential
family and is specified by two  parameters: a permutation �0 which can be seen
as  the consensus ranking (the mode), and a spread parameter � which determines
how concentrated the different rankings are around �0, that is, how flat or peaked
the  distribution is. Perhaps the most famous extension of the Mallows model is
the  generalized Mallows model (GMM)  [13]. In the GMM,  again we have the mode
or  consensus permutation, �0, but instead of a single spread parameter �, GMM
requires n − 1 spread parameters {�j}n−1

j=1 , where each �j affects the jth position of the

∗ Corresponding author. Tel.: +34 967599200; fax: +34 967599224.
E-mail addresses: juanangel.aledo@uclm.es (J.A. Aledo), jose.gamez@uclm.es

(J.A. Gámez), david.molina@uclm.es (D. Molina).

permutation. When an appropriate distance is used, the GMM  can be seen as a
multistage ranking model [15].

In  this paper, our aim is to estimate the parameters required in the GMM
from a dataset of permutations/rankings by using a variety of widely tried and
tested search-based metaheuristic (MH) methods. This task has been previously
approached by using greedy heuristics and branch-and-bound (A*) algorithms
[2,33,35]. However, the results achieved for GMM  parameters are far from being as
good as the ones obtained when learning the parameters for the Mallows model.
The  main problem lies in the fact that in the Mallows model the estimation of
the  parameters can be performed independently, first the consensus permutation
(which simply comes down to the well-known Kemeny ranking problem [27]), and
then the spread value, while in the GMM  constructive algorithms need to estimate
the corresponding �j simultaneously with the consensus permutation that is being
built step by step.

In this study we propose to approach the problem by using both local and global
search metaheuristic algorithms. This type of method searches for the entire con-
sensus permutation all at once, and not constructively item by item as the Borda
and  A* algorithms do.

As mentioned above, the main difference between GMM  and MM is that now
the problem does not come down to the Kemeny ranking problem, because the
quality of a candidate permutation does not depend only on itself but also on the
estimated �j values. Therefore, we need to interleave the estimation of candidate
permutations with the estimation of their corresponding set of �j values, which,
given a permutation, can be efficiently carried out by using a numerical algorithm
for convex optimization [33]. As the inference engine for guiding the search we
propose to apply the following MHs  methods:

• Iterated local search (ILS) methods [31], which are multi-start local search algo-
rithms that try to escape from a current local optimum by perturbing it, and use
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the resulting configuration to seed a new hill climbing iteration. Regarding the
hill  climbing stage, we have considered two different neighborhoods.

• Variable neighborhood search (VNS) methods [21], which are also local search algo-
rithms which alternate different neighborhoods to guide the search.

• Genetic algorithms (GAs). When addressing optimization problems by using global
search, evolutionary algorithms [37] and, in particular, GAs [20] have proven to
perform successfully in permutation-based problems [1].

• Estimation of distribution algorithms (EDAs) [29]. These are a novel family of
evolutionary computation algorithms based on modeling a population by using
probabilistic models. Here we have considered two specific algorithms to deal
with permutations: a node-based histogram EDA (NHM) and an edge-based his-
togram EDA (EHM).

Thus, we have carried out a comparative study of the selected MHs algorithms
(ILS, VNS, GAs and EDAs) and the branch-and-bound (A*) algorithm, which was
specifically designed to cope with the target problem by Ali and Meila [2,33,35]. We
use  22 real datasets of different complexity, all but one of which were created by
the  authors by preprocessing real raw data (see Section 5.1).

As the experiments reported here demonstrate, the proposed MHs  algorithms
obtain better results (statistically significant) than the competing approaches con-
sidered. Obviously, MH algorithms need far more time than the Borda algorithm.
However, given a dataset, the learning task is usually performed only once and so
can be run off-line. On-line inference tasks will benefit from repeatedly using a
good (fast) model. The use of MHs  is widespread when the goal is to obtain accurate
models at the expense of time consumption [10,17].

Our paper is organized as follows. In Section 2 we  provide preliminaries
and  basic notations regarding rankings and the GMM.  In Section 3 we review
related/competing approaches to dealing with the problem of parameter estima-
tion in GMM.  Section 4 is devoted to describing the proposed MH  algorithms. In
Section 5 we describe our experimental study, detailing the datasets, methodology
and results. We have designed two  kinds of experiments by varying the number
of  evaluations that an algorithm is allowed to carry out, in order to test different
features of the MH algorithms. Finally, in Section 6 we present our conclusions.

2. Preliminaries

In this section we introduce the notation as well as some back-
ground on the problem under study.

Suppose we have to rank n items labeled 1, 2, . . .,  n. Then, any
permutation � of these items represents a ranking. The space of all
the possible rankings forms the symmetric group Sn:

Definition 1. (Symmetric group)[12] The symmetric group Sn is
the group whose elements are the permutations of the n symbols
{1, 2, . . .,  n}, and whose group operation is the composition of such
permutations, which are treated as bijective functions from the set
of symbols to itself. Since there exists n ! different permutations of
size n, the order of the symmetric group is n !.

We will write � = (x1 x2, . . .,  xn) to indicate that x1 is ranked as
the first item, x2 as the second one, and so on. We  will also denote
by �(j) the jth element of �.

To compare two given rankings or permutations, distances are
used as the common tool. Although different distance measures
are available in the literature, the Kendall tau distance is usually
considered for the definition of Mallows and generalized Mallows
distributions (see Sections 2.1 and 2.2).

Definition 2. (Kendall distance [28]) The Kendall distance d(�, �)
between two rankings �, � ∈ Sn is defined as the total number of
item pairs over which they disagree. There is disagreement over an
item pair (i, j), 1 ≤ i < j ≤ n, if the relative order of i and j is different
in � and �. Hence

d(�, �) =
∑
i≺�j

1[j≺� i], (1)

where 1[·] is the indicator function and i ≺ �j means that i precedes
j in the permutation �.

More precisely,

d(�, �) = |{(i, j) : i < j, (�(i) < �(j) ∧ �(i) > �(j)) ∨
(�(i) > �(j) ∧ �(i) < �(j))}|

Given two  permutations �, � ∈ Sn, Vj(�, �), j = 1, . . .,  n − 1, is
defined as [33]:

Vj(�, �) =
n∑

i=j+1

1[�(i)≺��(j)] (2)

Thus, V1 stands for the number of elements ranked in � after
�(1) and ranked in � before �(1); V2 corresponds to the number of
elements ranked in � after �(2) and ranked in � before �(2), and
so forth (see [13] for more details).

Note that Vj takes values in {0, . . .,  n − j}. Moreover, it is possible
to determine � from � and the n − 1 integer values of V1(�, �), V2(�,
�), . . .,  Vn−1(�, �) [35].

Using (1) and (2), the Kendall distance d(�, �) can be expressed
in terms of the functions Vj(�, �) as

d(�, �) =
n−1∑
j=1

Vj(�, �).

When a set of permutations � = {�1, �2, . . .,  �N} is considered,
a precedence matrix Q =

[
Qij

]
i,j=1:n

is useful in order to compute

the consensus permutation, that is, the Kemeny ranking of � [27].
Specifically, Q is computed as

Qij = 1
N

N∑
k=1

1[i≺�k j]. (3)

In other words, Qij represents the fraction of times that item i is
ranked before item j across all the N rankings.

Moreover, given � ∈ Sn we  define V̄j(�,  �) as the average of the
Vj(�i, �)’s, that is,

V̄j(�, �) =

N∑
i=1

Vj(�i, �)

N
.

Observe also (see [33]) that

V̄j(�, �) =
n∑

i=j+1

Q�(i)�(j). (4)

2.1. The Mallows model

The Mallows model (MM)  [32] is a distance-based probability
distribution over permutation spaces which belongs to the expo-
nential family. Given a distance over permutations, it can be defined
by two parameters: the central permutation �0, and the spread
parameter �.

Definition 3. (Mallows model [32]) The Mallows model is the
probability distribution that satisfies, for all rankings � ∈ Sn,

P(�) = e−� · d(�,�0)

 (�)
,

where the ranking �0 and � ≥ 0 are the model parameters, and  (�)
is a normalization constant (see [13]).

The parameter � of the MM quantifies the concentration of the
distribution around its peak �0. For � > 0, the probability of �0 is
the one with the highest value and the probability of the other
n ! −1 permutations decreases with the distance from �0 and the
spread parameter �. For � = 0 the uniform distribution is obtained.
Due to this behaviour, the Mallows distribution on the space of
permutations is considered analogous to the Gaussian distribution
on the space of real numbers.

From now on, we  assume that the Kendall distance is considered.
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