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a  b  s  t  r  a  c  t

Parameter  estimation  is a cornerstone  of most  fundamental  problems  of  statistical  research  and  practice.
In particular,  finite  mixture  models  have  long  been  heavily  relied  on  deterministic  approaches  such  as
expectation  maximization  (EM).  Despite  their  successful  utilization  in  wide  spectrum  of areas,  they  have
inclined to converge  to local solutions.  An  alternative  approach  is  the  adoption  of  Bayesian  inference  that
naturally  addresses  data  uncertainty  while  ensuring  good  generalization.  To  this  end,  in this  paper  we
propose  a fully  Bayesian  approach  for Langevin  mixture  model  estimation  and selection  via MCMC  algo-
rithm  based  on  Gibbs  sampler,  Metropolis–Hastings  and Bayes  factors.  We  demonstrate  the  effectiveness
and  the  merits  of the  proposed  learning  framework  through  synthetic  data  and  challenging  applications
involving  topic  detection  and tracking  and  image  categorization.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

As various disciplines have witnessed integration of digital technologies, high-
dimensional sparse data is becoming more prevalent in every field of human
endeavor. In the particular case of machine learning, such problems have been
tackled using statistical learning, providing a rich and flexible techniques that can
be  applied to model data randomness and uncertainty. In this context, often one
tries to understand this mass of data through analyzing informative patterns and
describing the best possible model which succeeds in capturing the regularities in
the  data generating process. Nonetheless selecting an appropriate model that solves
all  aspects of application at hand is a major challenge as different approaches are
needed, for distinct aspects, often depend on different representational choices. For
instance, although modeling based on Gaussian mixtures [1–4] has provided good
performance in some applications, recent works have shown that Gaussian model
is  sensitive to noise and irresistible to outliers when dealing with high-dimensional
data. Indeed, among the challenges when using finite mixture modeling, there is
the choice of appropriate parametric form of the probability density functions to
represent the components.

Compared to the Gaussian, Langevin distribution has been shown to be a
good alternative [5–7]. Usually, it is adopted to model problems involving high-
dimensional spherical (L2-normalized) vectors [5]. Indeed, it implicitly uses cosine
similarity that is easy to interpret and simple to compute for sparse vectors, and has
been widely used in text mining [8], spam filtering [6], gene expression analysis [9],
and topic detection [10–12]. Works about directional data in general and spherical
ones in particular have been developed thanks to the efforts of Watson, Stephens and
others [13–23]. In this work, we shall consider finite Langevin mixtures. A key step
in  mixture-based modeling of data is parameter estimation. Many methods have
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been proposed in the literature in order to estimate mixture parameters, including
frequentist (a.k.a. deterministic) and Bayesian approaches [24]. In this paper, we
focus in developing parameter estimation and model selection from Bayesian per-
spective. We are mainly motivated by the fact that Bayesian learning has several
desirable properties that make it widely used in several applications. For instance,
it  does not suffer over-fitting and prior knowledge is incorporated naturally in a
principled way. In this paper we shall not motivate further Bayesian learning which
has  been widely discussed in the past (interested reader may refer to [25–27] for
further details and interesting discussions).

Rooted in the early work of [28] Bayesian inference for the von Mises Fisher
(vMF) distribution (3-dimensional case of the Langevin distribution) was  proposed.
This  work was based on the development of a conjugate prior for the mean (Jeffreys
prior was also developed for the polar coordinates) when concentration parameter
is  known. In the area of radio signals, authors in [29] applied Bayesian approach
for  finding the location of an emergency transmitter signal based on the von Mises
(vM) distribution (2-dimensional case of the Langevin distribution) by developing
conjugate priors using the canonical parameterization. A Gibbs sampler for vM
distribution was introduced in [30] by developing conjugate priors for the polar
coordinates. In [31] authors provide a full Bayesian analysis of directional data
using the vMF distribution, again using standard conjugate priors and obtaining
samples from the posterior using a sampling-importance-resampling method.
Compared to these methods, our work is not restricted to low dimensional data
(i.e. von Mises (2D) or von Mises Fisher (3D)) which is a limited solution for many
real-world problems. On contrary, we extend previous models to high dimensional
data using Langevin mixture (for D > 3) where both the concentration and mean
parameters are unknown. In particular, we propose a Markov Chain Monte Carlo
(MCMC) algorithm that relies on Gibbs sampler and Metropolis–Hastings (M-H) for
the  estimation of the parameters. To this end, we develop a conjugate prior for the
Langevin distribution taking into account the fact that it belongs to the exponential
family. As well as considering the estimation over model parameters, we also wish
to  consider the optimal number of components that best describe data at hand. One
common approach is integrated likelihood [32] which we shall adopt for Langevin
mixture in this paper. Note that, despite various efforts to use Bayesian inference
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to learn mixtures [33,34], to the best of our knowledge, none of the recent works
has  considered the case where the feature vectors to model are spherical so far.

The rest of this paper is organized as follows. In Section 2 we briefly introduce
Langevin finite mixture model. In Section 3 we  present previous parameter estima-
tion approaches and then we  propose a pure Bayesian algorithm for the estimation
and selection of Langevin mixture model. Experimental results in vital and chal-
lenging problems, namely topic detection and tracking and image categorization,
are presented in Section 4. Finally, Section 5 concludes the paper.

2. Finite Langevin mixture model

Let �X = (X1, . . .,  XD) be a random unit vector in R
D. �X has D-

variate Langevin distribution if its probability density function is
given by [35]:

pD(�X| ��, �) = �
D
2 −1

(2�)
D
2 I D

2 −1(�)
exp{� ��tr �X} (1)

on the (D − 1)-dimensional unit sphere S
D−1 = { �X| �X ∈ R

D : ‖�X‖ =√
�Xtr �X = 1}, with mean direction unit vector �� ∈ S

D−1, where ��tr

denotes the transpose of �� and non-negative real concentration
parameter � ≥ 0. Furthermore, ID(�) denotes the modified Bessel
function of first kind [35]. Let p(�Xi|�)  be a mixture of M Langevin
distributions (i.e. a linear weighted combination of M distributions).
The probability density function p(�Xi|�)  is then given by

p(�Xi|�) =
M∑

j=1

pD( �Xi|�j)pj (2)

where � = {�P = (p1, . . .,  pM), �� = (�1, . . .,  �M)} denotes all the
parameters of the mixture model such that �j = (�j, �j) and �P repre-
sents the vector of clusters probabilities (i.e. mixing weights) such
that pj ≥ 0 and

∑M
j=1pj = 1.

3. Parameter estimation

3.1. Likelihood estimation via expectation maximization (EM)

An efficient way to estimate the parameters of underlying
mixture model is to optimize the associated likelihood function,
which plays a key role in many estimation approaches such as
EM and Bayesian. Assuming that the unit vectors to cluster, X  =
{�X1, . . ., �XN}, are independent and identically distributed, thus, the
likelihood of Langevin mixture in Eq. (2) can be formulated as:

p(X|�) =
N∏

i=1

p(�Xi|�) (3)

One approach to estimate the � parameters of the mixture is to
maximize the log likelihood

log p(X|�) =
N∑

i=1

log

⎛
⎝ M∑

j=1

pp( �Xi|�j)pj

⎞
⎠ (4)

Maximum likelihood estimation is generally implemented via the
EM framework [36] which generates a sequence of models with
non-decreasing log-likelihood on the data. Following EM,  consider
the complete data to be { �Xi, �Zi}, where �Zi = (Zi1, . . .,  ZiM) denotes
the missing vectors, such that

∑M
j=1Zij = 1 with Zij = 1 if �Xi belongs

to class j and 0, otherwise. The E-step in EM computes the posterior
probabilities given by the following equation:

Ẑij = p(�Xi|�j)pj∑M
j=1p(�Xi|�j)pj

(5)

where Ẑij ∈ [0,  1],
∑M

j=1Ẑij = 1 and denotes the degree of member-

ship of �Xi in the jth cluster. In the M-step, given the conditional
expectation of complete log-likelihood, we  update the parameters
estimate by maximizing the complete data log likelihood from the
E-step. A complete EM algorithm for Langevin mixture has been
proposed in [5,6]. Unfortunately, maximum likelihood estimation
does not provide tractable (closed form) solution for the parameters
of Langevin mixture, especially that calculations include the ratio of
Bessel function for the concentration parameter �. Moreover, when
the data at hand has high dimensionality and large number of com-
ponents EM shows poor generalization and might lead to over- or
under-fitting [33].

3.2. Bayesian estimation

As we previously discussed EM provides an elegant and simple
way to estimate the parameters of a given model, yet, EM algorithm
is sensitive to the initialization and generally converges to local
solution in the best case. To avoid this problem, an alternative way
is to use Bayesian estimation for Langevin mixture model.

Bayesian estimation is based on finding the conditional dis-
tribution �(�|X, Z)  of parameters vector � which is brought by
complete data (X, Z), where Z = {�Z1, . . ., �ZN}. We  therefore select
a prior distribution �(�) and then develop posterior distribution
�(�|X, Z)  which is derived from the joint distribution p(Z, �,  X)
via Bayes formula �(�|X, Z) ∝ p(Z, �,  X). The joint distribution of
all variables can be written as:

�(�|X, Z)  = p(��, �P|X, Z) ∝ p(�P)p(��)p(Z|�P)
∏
Zij=1

p(�Xi|�j) (6)

where p(��) and p(�P) are the priors of � and �P which we will describe
in what follows.

3.2.1. Priors and posteriors
In order to derive our Bayesian algorithm we  now turn to

defining our priors over the parameters. Langevin distribution is
a member of (curved)-exponential family of order D, whose shape
is symmetric and unimodal. Thus, we can write it as the following
[37]:

p(�X|�) = H(�X) exp(G(�)trT(�X) + �(�)) (7)

where G(�) = (G1(�), . . .,  Gl(�)), T(�X) = (T1(�X), . . .,  Tl(�X)) where l is
the number of parameters of the distribution and tr denotes trans-
pose. The conjugate prior1 on �, in this case, can be written as
[27]:

�(�) ∝ exp

(
S∑

l=1

�lGl(�) + 	�(�)

)
(8)

where � = (�1, . . .,  �S) ∈ R
S and 	 > 0 are referred as hyperpa-

rameters. To this end, Langevin distribution can be written as
follows:

pD(�X| ��, �) = exp{� ��tr �X − aD(�)} (9)

1 Ref. [38] contains an interesting discussion about the characteristics of conju-
gate priors and their induced posteriors in Bayesian inference for von Mises Fisher
distributions, using either the canonical natural exponential family or the more
commonly employed polar coordinate parameterizations.
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