Applied Soft Computing 38 (2016) 395-404

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

An ACO algorithm for makespan minimization in parallel batch
machines with non-identical job sizes and incompatible job families

Zhao-hong Jia®P, Chao Wang", Joseph Y.-T. Leung -

2 Key Lab of Intelligent Computing and Signal Processing of Ministry of Education, PR China

@ CrossMark

b School of Computer Science and Technology, Anhui University, Hefei, Anhui 230039, PR China

¢ School of Management, Hefei University of Technology, Hefei, Anhui 230009, PR China

d Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

ARTICLE INFO ABSTRACT

Article history:

Received 16 January 2015

Received in revised form 11 June 2015
Accepted 29 September 2015
Available online 19 October 2015

We study the problem of scheduling a set of N jobs with non-identical job sizes from F different families
on a set of M parallel batch machines; the objective is to minimize the makespan. The problem is known
to be NP-hard. A meta-heuristic based on Max-Min Ant System (MMAS) is presented. The performance
of the algorithm is compared with several previously studied algorithms by computational experiments.

According to our results, the average distance between the solutions found by our proposed algorithm

Keywords:

Parallel batch machines
Max-Min Ant System
NP-hard
Incompatible job families
Makespan

and the lower bounds is about 4% less than that of the best of all the compared algorithms, demonstrating
that our algorithm outperforms the previously studied algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Batch scheduling problems occur in many industries, such as semiconductor
manufacturing, cargo handling in port, transportation, storage systems, and so on.
The problem is motivated by the diffusion operation in the wafer fabrication of
semiconductor manufacturing. Due to the chemical nature of the process, only jobs
with the same recipe can be processed together [1]. All jobs requiring the same
recipe can be viewed as a job family, and jobs in the same family have the same
processing times. Effective scheduling of these operations is particularly important
because of their long processing time requirements, generally 10 h as opposed to 1
or 2 h for most other processes.

In contrast to the classical machine scheduling, a batch processing machine
(BPM) can process several jobs in a batch simultaneously. There are two types of
batch scheduling problems: s-batch and p-batch. In s-batch, the jobs in a batch are
processed in serial and the processing time of a batch is the sum of the processing
times of all the jobs in the batch, while in p-batch, the jobs in a batch are processed
in parallel and the processing time of a batch is the longest processing time of the
jobs in the batch. P-batch scheduling is more important than s-batch scheduling in
semiconductor manufacturing [2]. Additionally, p-batch scheduling is often encoun-
tered in many modern manufacturing industries such as food, chemical and mineral
processing, pharmaceutical and metalworking industries as well as environmental
stress screening chamber fabrication [3].

In this paper, we consider p-batch scheduling on parallel BPMs with identical
machine capacity, non-identical job sizes and incompatible job families. Jobs with

* Corresponding author at: Department of Computer Science, New Jersey Institute
of Technology, Newark, NJ 07102, USA. Tel.: +1 9735963387; fax: +1 9735965777.
E-mail addresses: zhjia@mail.ustc.edu.cn (Z.-h. Jia), chaowang_ahu@163.com
(C. Wang), leung@njit.edu (J.Y.-T. Leung).

http://dx.doi.org/10.1016/j.as0c.2015.09.056
1568-4946/© 2015 Elsevier B.V. All rights reserved.

non-identical sizes come from different job families. All jobs in the same family
have the same processing times, while jobs from different families have different
processing times. The jobs have to be grouped into batches such that the total size of
the jobs in the batch does not exceed the machine capacity. Moreover, jobs from dif-
ferent families cannot be grouped together in the same batch. The jobs are assumed
to be ready at time zero. The processing time of a batch is equal to the longest
processing time of all the jobs in the batch [4]; in our case the processing times of all
the jobs in a batch are the same. The batches are then scheduled on the machines to
minimize the makespan. The problem of minimizing the makespan on a single BPM
with non-identical job sizes has been shown to be NP-hard [5]. Thus, our problem
is also NP-hard.

Like other batch scheduling problems, the problem in this paper can be
addressed by solving two independent subproblems: group the jobs into batches
and schedule the batches on the parallel BPMs. We propose a Max-Min Ant System
(MMAS) algorithm to group the jobs into batches, and then apply the Multi-Fit (MF)
algorithm [6] to schedule the batches on the machines.

In the literature, there are several articles that deal with incompatible job fam-
ilies [1,30,31,35,36]. The article in [1] assumes that the job sizes are identical, while
we deal with arbitrary job sizes. The articles in [30,31] deal with the total weighted
tardiness objective, while we study the makespan objective. The articles [35,36]
study exactly the same problem as ours. Article [35] studies parallel BPMs while arti-
cle [36] studies a single BPM. We will be comparing the performance of our heuristic
against the heuristics of [35]. As we shall see later, our heuristic outperforms all of
the heuristics in [35].

The paper is organized as follows. In the following section we review previ-
ous related work on BPM scheduling problems as well as the MMAS algorithm.
Section 3 formally defines the problem, and a lower bound is provided. The
proposed algorithm and its implementation are described in Section 4, and the
results of the computational experiment are reported in Section 5. Finally, in Sec-
tion 6, we conclude the paper with a summary and some directions for future
research.

dx.doi.org/10.1016/j.asoc.2015.09.056
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.09.056&domain=pdf
mailto:zhjia@mail.ustc.edu.cn
mailto:chaowang_ahu@163.com
mailto:leung@njit.edu
dx.doi.org/10.1016/j.asoc.2015.09.056

396 Z.-h. Jia et al. / Applied Soft Computing 38 (2016) 395-404

2. Previous related work

Recently, a lot of research has been done on scheduling on BPMs
as well as the MMAS algorithm. Previous work related to these two
areas will be presented in the next two subsections.

2.1. BPM problem

We focus on reviewing the literature that have commonalities
with the problem assumptions as ours.

Ikura and Gimple [7] probably are the first to introduce the batch
scheduling problem. They provided an O(n2) algorithm to mini-
mize the makespan on a single BPM with identical job processing
times and job sizes, and different job release times. Lee et al. [8]
proposed efficient algorithms for minimizing the number of tardy
jobs and maximum tardiness under a set of assumptions. They also
gave a heuristic with a tight worst-case bound to minimize the
makespan on parallel BPMs. Chandru et al. [9] proposed a branch-
and-bound algorithm for scheduling on a single BPM to minimize
the total completion time. However, their algorithm is only effec-
tive on small-scale instances. Chandru et al. [10] demonstrated that
the problem of scheduling on a single BPM with a fixed number of
job families can be solved in polynomial time. For a fixed number of
incompatible job families, Leung [11] provided a polynomial-time
algorithm to minimize the makespan on parallel BPMs, assuming
unit job sizes. Uzsoy [1] examined a number of problems related
to the scheduling on BPMs with incompatible job families and unit
job sizes. He developed efficient optimal algorithms to minimize
the makespan, maximum lateness and total weighted completion
time. He further applied some of the results to parallel BPMs. He also
investigated the problem with dynamic job arrivals with the objec-
tives of minimizing the makespan and maximum lateness. Under
the assumptions of job number and machine capacity being fixed,
Mehta and Uzsoy [12] gave a polynomial-time dynamic program-
ming algorithm for scheduling on a single BPM to minimize total
tardiness. They also examined the heuristic which can find near-
optimal solutions in reasonable computational time. Lee and Uzsoy
[13] studied the problem of scheduling on a single BPM to minimize
the makespan, when the jobs have release times. They proposed
polynomial and pseudo-polynomial time algorithms for several
special cases. They also provided efficient heuristics for the gen-
eral problem and conduct extensive computational experiments to
evaluate the performances of the algorithms.

One assumption of the above research is that each job has
unit size. However, job sizes are often different in practice.
Hence, some researchers turned to study scheduling problems with
non-identical job sizes on a single BPM. Uzsoy [5] proved that mini-
mizing the makespan on a single BPM with non-identical job sizes is
strongly NP-hard. He provided a number of heuristics and a branch-
and-bound algorithm that can solve small-scale problems. Dupont
and Jolai Ghazvini [14] provided two heuristics, named the Best-
Fit-Longest-Processing-Time (BFLPT) and the Successive Knapsack
(SK). BFLPT is based on the Best-Fit algorithm for the bin-packing
problem while SK builds a schedule, batch by batch, where the
jobs are grouped to minimize the unoccupied space in the batch.
Uzsoy and Yang [15] presented a number of heuristics and a branch-
and-bound algorithm to minimize the total weighted completion
time.

Under the assumptions that only jobs from the same family can
be batched together and jobs in the same family have the same
processing times, Dobson and Nambimadom [16] proposed several
heuristics to minimize the total weighted completion time on a
single BPM. Azizoglu and Webster [17] developed a branch-and-
bound algorithm that can solve problems up to about 25 jobs in
reasonable time. To minimize the makespan on a single BPM with
non-identical job sizes, Dupont and Dhaenens-Flipo [18] provided a

branch-and-bound method. Based on the Longest-Processing-
Time (LPT) and the First-Fit (FF) rules, Cheng et al. [19] gave
two polynomial-time heuristics to schedule jobs with arbitrary
sizes and incompatible families on a single BPM to minimize
the makespan and the total batch completion time, respectively.
Jolai [20] presented a polynomial-time dynamic programming
algorithm to minimize the number of tardy jobs for a fixed num-
ber of job families and limited machine capacity. Li et al. [21]
provided an approximation algorithm for the general problem
with arbitrary release times and job sizes. Yao et al. [22] solved
the problem of scheduling on a single BPM with non-identical job
sizes and dynamic job arrivals through an improved branch-and-
bound algorithm.

Recently, meta-heuristics have been applied to solve scheduling
problems on a single BPM. Damodaran et al. [23] presented a Sim-
ulated Annealing (SA) algorithm to minimize the makespan on a
single BPM. Kashan et al. [24] provided two Genetic Algorithms
(GAs) for the same problem. Jia and Leung [25] proposed a MMAS
algorithm for minimizing the makespan on a single BPM. Based on
an Ant Colony Optimization (ACO) algorithm, Lietal. [26] addressed
the bi-criteria problem of scheduling jobs with different arrival
times, incompatible families, sequence-dependent setup times and
the qual-run requirements of advanced process control on paral-
lel BPMs to minimize the Total Weighted Tardiness (TWT) and the
makespan simultaneously. To schedule a single BPM with jobs of
unequal sizes, dynamical arrivals, and due dates with the aim of
minimizing the makespan and the TWT simultaneously. Wang and
Chou [27] developed a SA-based Pareto multi-objective algorithm.

With the development of new production environments, the
study of scheduling on parallel BPMs with identical job sizes has
emerged. Lee et al. [8] proposed the LPT heuristic algorithm. To
minimize the makespan, maximum lateness, and total weighted
completion time, Uzsoy [1] applied a number of algorithms to
schedule on single and parallel BPMs with incompatible job fami-
lies and job release times. Brucker et al. [28] developed a dynamic
programming algorithm for scheduling on two identical and par-
allel BPMs with identical deadline, unit processing time and unit
setup time. For the minimization of total weighted tardiness on
parallel BPMs with incompatible families, identical job sizes and
arbitrary job weights, Ménch and Almeder [29] presented an Ant
Colony System (ACS) and a MMAS algorithms. Venkataramana and
Srinivasa Raghavan [30] gave an ACO-based algorithm by using the
structural properties of the problem. Almeder and Ménch [31] pro-
posed an ACO algorithm and a Variable Neighborhood Search (VNS)
approach hybridized with a decomposition heuristic and a local
search scheme for the same problem. According to the experimen-
tal results, the VNS method shows better performance than the ACO
and the GA algorithms in both the running time and the solution
quality.

Since job sizes are generally non-identical in practice,
researchers began to study the scheduling problems with non-
identical job sizes on parallel BPMs. Ozturk et al. [32] addressed
the makespan minimization problem on parallel BPMs with non-
identical job sizes and release dates; they gave a 2-approximation
algorithm as well as a MILP model. Chang et al. [33] provided a
SA algorithm to minimize the makespan on parallel BPMs with
non-identical job sizes. The SA exploits a better neighboring solu-
tion after the jobs are grouped into batches and then the batches
are assigned to the machines by the LPT rule. To minimize the
makespan on parallel BPMs, Damodaran and Chang [34]| presented
several heuristics and compared their performances with that of
the SA(Changetal.[33])and CPLEX. Kohetal.[35,36] addressed the
problem of scheduling on single and parallel BPMs with arbitrary
job sizes and incompatible job families to minimize the makespan,
total completion time and total weighted completion time. For each
problem, they designed a number of heuristics and compared the

Download English Version:

https://daneshyari.com/en/article/494873

Download Persian Version:

https://daneshyari.com/article/494873

Daneshyari.com

https://daneshyari.com/en/article/494873
https://daneshyari.com/article/494873
https://daneshyari.com

