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• Motion of robot links attached to the lattice sites of a simple exclusion process.
• Approximate mean and covariance propagation equations for particle number at sites.
• Average Lagrangian of the system of links attached to the occupied sites interacting.
• Quantization of the link motion via the Schrodinger wave function is studied.
• Complete plots of the density and covariance profile of the exclusion process.
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a b s t r a c t

The motion of robot links attached to the lattice sites of a simple exclusion process in Z3
N is described.

Approximate mean and covariance propagation equations for the particle number at the sites is derived.
The average Lagrangian of the system of links attached to the occupied sites interacting with each other
on a pair wise basis via potential dependent on the lattice sites and the link orientations at the two sites is
setup. Complete plots of the density and covariance profile of the exclusion process are generated based
on Poisson process simulation. Plots of the link angles are also generated. Quantization of the link motion
via the Schroedinger wave function is studied.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider a simple exclusion process as in [1] involving
particles distributed over the large Z3

N with particles jumping from
one occupied sites to unoccupied sites in accordancewith a Poisson
process clock with rates dependent on the location of the sites.
Such a process {ηt (x) : xϵZ3

N}t≥0 determines a Markov process
whose generator can easily be calculated [1]. Now each particle in
an occupied site x is replaced by a robot linkwhose direction angles
(θt (x), φt (x)) at time t determine its kinetic energy and potential
energy of interactionwith a link at another occupied site y specified
by angles (θt (y), φt (y)).

Two kinds of model are proposed to study the dynamics of
(θt (x), φt (x)). In the first, these angles are regarded as deterministic
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process and the average Lagrangian of the system is calculated
by averaging over functions of the exclusion-process {ηt (x)}. The
Euler–Lagrange equations for the angles {θt (x), φt (x)|xϵZ3

N} are
then set up. In the second model, we do not take the probabilis-
tic average of the Lagrangian but rather work with the random
Lagrangian and set up the Euler–Lagrangian differential equation
for the process (θt (x), φt (x)), xϵZ3

N , t ≥ 0 using the random La-
grangian. This yields us differential equation for θt (x), φt (x) with
random process coefficients coming as functions of the exclusion
process {ηt (x)}. we then set up an approximate analysis of these
equations. In the former case, we derive approximate mean and
covariance propagation equation for the exclusion process ηt (x).
The average Eηt (x) = ρt ( x

N ) gives us the particle density at the
site x while the covariances Ct ( x

N ,
y
N ) = E(δηt (x)δηt (y)) gives us

fluctuations in the particle density at each site and the correlations
in the fluctuations at different sites. Here δηt (x) = ηt (x) − ρt ( x

N ).
Approximatemean propagation and covariance propagation equa-
tion for ρt ( x

N ) and Ct ( x
N ,

y
N ) are derived from the Poisson driven
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stochastic differential equation for ηt (x). These approximate mean
and covariance propagation equations are used in the former La-
grangian by expanding functions of ηt (x) around its mean ρt ( x

N ).
Certain assumptions regarding the interaction potential energies
between particles at two sites x and y i.e.V (θt (x), φt (x), θt (y), φt (y))
are made like assuming ∥y−x∥

N is small for significant interactions.
This causes

V (θt (x), φt (x), θt (y), φt (y))
≈ V (θt (x), φt (x), θt (x) + (y − x)θ ′

t (x), φt (x) + (y − x)φ′

t (x)), (1)

i.e. average Lagrangian depends only on θt , φt , θ
′
t , φ

′
t , θ̇t , φ̇t and

non-linear wave equations for θt , φt can be obtained in the limit
|y−x|
N −−−→

N→∞

0.

In the latter model, we also need to set mean and covariance
propagation equations for the angles θt (x), φt (x) as these quantities
now become stochastic processes driven by the exclusion process.
Further we may also assume that the Poisson jump rate from one
site x to another site y depends on the angles θt (x), φt (x). We
thus need to set up approximatemean and covariance propagation
equations for{[

ηt (x)
θt (x)
φt (x)

]
, xϵZ3

N

}
. (2)

Wedonot perform the entire analysis for this case. The final section
of the analysis part of this paper is to study quantization of the
system described by the average Lagrangian. This is achieved by
assuming that the kinetic energy of each link in an occupied site
is a quadratic function of (θ̇t (x), φ̇t (x)) and perform a Legendre
transformation to express the average Hamiltonian as quadratic
function of the canonical moment (pθx(t), pφx(t)), xϵZ3

N . We then
set up the Schroedinger equation by replacing pθx(t) with ι ∂

∂θ (x) and
pφx(t) with ι ∂

∂φ(x) .
The simulation part consists of MATLAB plots of the exclusion

process ηt (x) at each site x = 1, 2, 3, . . . ,N assuming nearest
neighbour interactions only, i.e.

dηt (x) =

N∑
y=1,y̸=x

ηt (y)(1 − ηt (x))dNt (y, x)

− ηt (x)(1 − ηt (y))dNt (x, y), (3)

where Nt (x, y), x ̸= y are N(N − 1) independently generated
Poisson process. For a simple case with N = 10, we also display
plots of the link angles θt (x), φt (x), 1 ≤ x ≤ 10, t ≥ 0.

The behaviour of tagged particles in simple exclusion models
has been studied in Quastel, Kipnis and Varadhan [1,2]. Here the
state space of the Markov process is {0, 1}Z

d
N or if p colours are

included as in Quastel [1], the state space is {0, 1, 2, . . . , p − 1}Z
d
N .

The hydrodynamic scaling limit i.e. the limiting densities of the
coloured particles satisfy non-linear partial differential equation’s
in the scaling limit. These have been derived inQuastel [1]. Herewe
go a step further by assuming that at each occupied site is located a
link whose angles can vary with time and in some cases, the tran-
sition probability of a link from one site to the other depends on
this orientation angle. In the scaling limit, fluid particles are located
every where and yet transitions of links can take place in the sense
of ensemble averages. This has been the objective of our work.
Thus links present at two different lattice sites can undergomutual
transitions dependent upon the relative angular orientation of the
links. This happens for example in electro-magnetics. When the
links carry currents which produce magnetic fields which interact
with the currents in other links. In otherwordswe superpose a link
structure on the simple exclusion model.

Kipnis and Varadhan [2] derive a central limit theorem for
tagged particles in simple exclusion andwe can generally consider

based on this, links attached to the tagged particles executing
diffusion processes and interacting according to their angular ori-
entation. Such problems will be studied in a future paper.

In Jang, et al. [3] motion of a micro-robot moving in a microflu-
idic system controlled by em fields is discussed. This problem is
very similar to our if we assume that the fluid consists of particles
which can diffuse. In fact, using the asymmetric simple exclusion
model Kipnis, et al. [4] derive an equation of the form
∂ρ

∂t
= ∇.(D∇ρ) + ∇.(bρ(1 − ρ)), (4)

in the scaling limit which is a non-linear diffusion equation. Varad-
han [5] also talks about deriving the fundamental fluid dynamical
equations by perturbing Hamiltonian systems with noise. In this
case, they also obtain partial differential equations for the velocity
field. Even in (4), if we assume a robot located at site x interacting
via em fieldswith a robot at site y, thenwewould obtain ourmodel
for the angular orientations of our robot.

Themotor of robot in amicrofluidic system as inWang, et al. [3]
can be used in medical applications wherein the fluid is blood.

Let v(t, r) denote the fluid velocity field. Then the kinetic energy
of two robots moving along two different fluid trajectories is of the
form

T1(θ1, φ1, θ̇1(t), φ̇1(t)) + T2(θ2, φ2, θ̇2(t), φ̇2(t))

+
1
2
m1|ṙ1(t)|2 +

1
2
m2|ṙ2(t)|2, (5)

where ṙ1(t) = v(t, r1(t)), ṙ2(t) = v(t, r2(t)) and the potential
energy of interaction between the two robots is of the form

V (r1(t), r2(t), θ1, φ1, θ2, φ2). (6)

So if the fluid velocity field is known, we can set up the Euler–
Lagrange equation of the system.

In the simple exclusion model for the fluid, we may also take
into account the translational velocity of motion in the kinetic
energy, via the method discussed in the paper, i.e. the average
velocity of a particle moving from site x to site y is

v(t, x, y) = E
[
ηt (x)(1 − ηt (y))

(y − x)
dt

dNt (x, y)
]

= p(x, y)(y − x)E(ηt (x)(1 − ηt (y))). (7)

Further, Quastel, et al. [6] have considered the problem of deter-
mining the Large deviation rate functional for the empirical den-
sity. Specifically they first consider a symmetric simple exclusion
process, and write down the Radon–Nikodym derivative of the
probability law of this process w.r.t. the same process perturbed
byweak asymmetry. They use this to compute the relative entropy
between the two processes and minimize this relative entropy
w.r.t the asymmetric perturbation of the jump probability subject
to constant ‘‘drift’’. The resulting expression is used to arrive at a
nice formula for the rate function. We can hope to generalize this
to the case of interacting links with the joint rate function for the
empirical density and the link angles.

In Tabak and Yesilyurt [7], the motion of a 3-D rigid body, or
more precisely a two link helical swimmer in a fluid has been
studied. The fluid resistance force on the rigid body has been
modelled as being proportional to the 3-D velocity vector with a
damping force matrix being the velocity damping coefficient. Ex-
plicit formulas for this matrix are obtained in terms of the rotation
matrix between the local fluid frame and the 3-d body frame.

Further the motion of the rigid body in the fluid causes the
fluid velocity field to change. This ismodelled by theNavier–Stokes
equation in the rotating frame of the rigid body. This model can be
incorporated in our paper by considering an array of rigid bodies
moving in a fluid, with a rigid body making a transition from one
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