
Applied Soft Computing 38 (2016) 501–517

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

A memory based differential evolution algorithm for unconstrained
optimization

Raghav Prasad Parouha ∗, Kedar Nath Das
Department of Mathematics, NIT, Silchar, Assam, India

a r t i c l e i n f o

Article history:
Received 12 January 2015
Received in revised form 31 July 2015
Accepted 8 October 2015
Available online 19 October 2015

Keywords:
Differential Evolution
Mutation
Crossover
Elitism
Unconstrained optimization

a b s t r a c t

In optimization, the performance of differential evolution (DE) and their hybrid versions exist in the
literature is highly affected by the inappropriate choice of its operators like mutation and crossover.
In general practice, during simulation DE does not employ any strategy of memorizing the so-far-best
results obtained in the initial part of the previous generation. In this paper, a new “Memory based DE
(MBDE)” presented where two “swarm operators” have been introduced. These operators based on the
pBEST and gBEST mechanism of particle swarm optimization. The proposed MBDE is employed to solve
12 basic, 25 CEC 2005, and 30 CEC 2014 unconstrained benchmark functions. In order to further test its
efficacy, five different test system of model order reduction (MOR) problem for single-input and single-
output system are solved by MBDE. The results of MBDE are compared with state-of-the-art algorithms
that also solved those problems. Numerical, statistical, and graphical analysis reveals the competency of
the proposed MBDE.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Optimization is a ubiquitous and spontaneous process and
frequently appears in the real world problems. In the world of opti-
mization evolutionary algorithms (EAs) have been treated as the
successful alternatives, since last few decades. Among all EAs, dif-
ferential evolution (DE) [1] is an efficient, formidable, and popular
ingredient [2]. Some reasons for the popularity of DE are high-
lighted as follows:

i. The main body of the classical DE requires 4–5 lines in any
programming language. Therefore it has easy implementation,
faster convergence, and stronger stability [3].

ii. It requires only a very few control parameters like CR (crossover
rate), F (mutant factor) and NP (population size) to be tuned.

iii. The space complexity of DE is also low as compared to some
of the most competitive real parameter optimizers [3]. In gen-
eral, it has efficient global search ability and hence considered
as global optimization algorithm [3].

iv. As evidenced by the recent studies on DE [4,5], it exhibits much
better performance in comparison with several other EAs.

∗ Corresponding author. Tel.: +91 8486542469.
E-mail addresses: rparouha@gmail.com (R.P. Parouha),

kndnitsmaths@gmail.com (K.N. Das).

So far, DE has received extensive attention and applied to
many engineering optimization problems, such as mechanical
engineering design problem [6], fuzzy clustering of image pixel [7],
economic load dispatch [8] and many others [3]. However, most of
the time, the solution gets stuck in some local optima. As a result
it leads to a premature convergence. It is because DE have some
individual shortcomings such as follows:

i. The local exploitation ability and convergence rate of DE is too
low [3].

ii. It loses maintaining the diversity in the population during sim-
ulation [3].

iii. The performance of DE decreases as the dimension of the prob-
lem increases [3].

iv. As other EAs it does not guarantee to find a global optimal solu-
tion in a finite time interval [3].

Therefore, in order to improve the performance of basic DE, a
number of attempts are made in the literature [3–16]. A detailed
survey on the variants of DE can be found in [4,5]. Moreover, in order
to improve the robustness of DE, a number of mutation strategies of
DE have been proposed in [3,10–12]. Basically, DE is much sensitive
to choice of the mutation strategy. On the other hand, inappropriate
choice of mutation strategy may lead to premature convergence,
stagnation, or wastage of computational time [3]. Also, it is very
difficult to recommend a fixed set of parameters for different
problems [3].

http://dx.doi.org/10.1016/j.asoc.2015.10.022
1568-4946/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2015.10.022
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2015.10.022&domain=pdf
mailto:rparouha@gmail.com
mailto:kndnitsmaths@gmail.com
dx.doi.org/10.1016/j.asoc.2015.10.022

502 R.P. Parouha, K.N. Das / Applied Soft Computing 38 (2016) 501–517

Similarly, researchers mainly used two types of crossover
schemes in DE, namely binomial crossover and exponential
crossover [1]. In [17], Price recommended that the use of bino-
mial crossover is better. But later, it is observed that there are no
significant differences between these crossovers [18].

Unfortunately, according to “No Free Lunch Theorem [19])”,
no single optimization method exist, which is able to solve con-
sistently to all global optimization problems. In spite of quite a
high number of DE variants exist in the literature; DE further
yields improved results while hybridizing with particle swarm
optimization (PSO) [20]. Each of them is capable of dominating
the shortcoming of the other to add the robustness in the resul-
tant hybrid algorithm. The magical synergy of DE and PSO has been
well established and has crossed many success milestones in recent
past. The year-wise applications of DE-PSO hybrid techniques and
their variants are summarized as follows:

Author Year Technique used Application

Hendtlass [21] 2001 SDEA Unconstrained global optimization
Zhang and Xie [22] 2003 DEPSO Unconstrained global optimization
Kannan et al. [23] 2004 CPSO Generation expansion planning
Talbi and Batouche [24] 2004 DEPSO Medical image processing
Das et al. [25] 2005 PSO-DV Unconstrained global optimization
Moore and Venayagamoorthy [26] 2006 DEPSO-MV Multi-objective optimization
Hao et al. [27] 2007 DEPSO Unconstrained global optimization
Omran et al. [28] 2008 BBDE Unconstrained optimization problems and image processing
Das et al. [29] 2008 PSO-DV Engineering design
Jose et al. [30] 2009 DEPSO Noisy functions
Zhang et al. [31] 2009 DE-PSO Unconstrained global optimization
Caponio et al. [32] 2009 SFMDE Unconstrained and engineering design optimization
Xu and Gu [33] 2009 PSOPDE Unconstrained global optimization
Wang and Cai [34] 2009 HMPSO Constrained optimization problems
Khamsawang et al. [35] 2010 PSO-DE Power systems
Liu et al. [36] 2010 PSO-DE Constrained and engineering optimization
Wang et al. [37] 2010 DEDEPSO Unconstrained global optimization
Niknam et al. [38] 2011 FAPSO–VDE Power systems
Pant and Thangaraj [39] 2011 DE-PSO Unconstrained and real life problems optimization
Thangaraj et al. [40] 2011 DE-PSO, AMPSO, GA-PSO Unconstrained global optimization
Epitropakis et al. [41] 2012 A family of DE and PSO based hybrids Unconstrained global optimization
Dor et al. [42] 2012 DEPSO-2S Unconstrained real life problems
Xin et al. [43] 2012 −– Review and taxonomy of hybrid DE and PSO
Nwankwor et al. [44] 2013 HPSDE Well placement optimization
Araújo and Uturbey [45] 2013 PSO–DE Power systems
Sayah and Hamouda [46] 2013 DEPSO Power systems
Kordestani et al. [47] 2014 CDEPSO Dynamic optimization problems
Yu et al. [48] 2014 HPSO-DE Unconstrained global optimization
Zuo and Xiao [49] 2014 Multi-DEPSO Dynamic optimization problems
Parouha and Das [50] 2015 DPD Constrained and engineering optimization

Though many variants of DE and its hybrid algorithms have been
suggested in the literature to solve optimization problems, they
are unable to provide satisfactory result. The reason behind this is
DE has no mechanism to memorize the so-far best solution, but
it uses only the global information about the search space [37,51].
Therefore, in spite of the increased convergence rate of DE, the algo-
rithm mostly loses its computing power and eventually leads to
premature convergence [3].

An attempt is made in this paper to employ the memory-based
mechanism in DE algorithm under the PSO environment. The rest
of the paper is organized as follows. Section 2 presents the tradi-
tional DE. Section 3 presents a detailed description of the proposed
algorithm. Section 4 presents result and discussion. Application of
proposed algorithm is presented in Section 5. Finally, Section 6
draws the conclusion with some future scopes.

2. Traditional differential evolution (DE)

DE is simple yet powerful optimization algorithm introduced
by Storn and Price in 1995 [1]. It uses three operators, mutation,
crossover, and selection to evolve from the randomly gener-
ated initial population to the final individual solution. In the

initialization a population of NP target vectors (parents) Xi = (x1i, x2i,
. . ., xDi), i = 1, 2, . . ., NP is randomly generated within user-defined
bounds, where D is the dimension of the problem. This population
undergoes with the cyclic processes of mutation, crossover, and
selection, which are briefly explained below. In this paper, only the
minimization problems are considered. However, maximization
problem can easily be converted to minimization problem.

Mutation: Let Xi(t) = (x1i(t), x2i(t), , xDi(t)) be the ‘ith’
individuals at ‘tth’ generation. A mutant vector Vi(t + 1) = (v1i(t +
1), v2i(t + 1), , vDi(t + 1)) is generated as follows:

Vi(t + 1) = xr1 (t) + F ∗ (xr2 (t) − xr3 (t)),

r1 /= r2 /= r3 /= i, i = 1, 2, . . ., NP, (1)

where r1, r2, r3 ∈
{

1, 2, . . ., NP
}

are randomly chosen integers,
different from each other and also different from the running index
i. F ∈ [0, 1] is a scaling factor which controls the amplification of the
difference vector.

Crossover: According to the target vector Xi(t) and the mutant
vector Vi(t + 1), a new trial vector (offspring) Ui(t + 1) = (u1i(t + 1),
u2i(t + 1), . . ., uDi(t + 1)) is created as follows:

Uji(t + 1) =
{

Vji(t + 1) if (rand(0, 1) ≤ CR) or j = rand(i)

Xji(t) if (rand(0, 1) > CR) and j /= rand(i)
(2)

where j ∈ {1, 2, . . ., D}, CR ∈ [0, 1] is the crossover constant,
rand(i) ∈ [1, 2, . . ., D] is a randomly chosen index, which ensures
that Ui(t + 1) gets at least one parameter from Vi(t + 1) [1].

Selection: The generated trial vector Ui(t + 1) from the crossover
operation will be compared with the target vector Xi(t) based on
better fitness values. The fittest between these two will survive
for the next generation. Therefore the selection criteria in DE are
defined as follows:

Xi(t + 1) =
{

Ui(t + 1) if f (Ui(t + 1)) ≤ f (Xi(t))

Xi(t) otherwise
. (3)

Download English Version:

https://daneshyari.com/en/article/494881

Download Persian Version:

https://daneshyari.com/article/494881

Daneshyari.com

https://daneshyari.com/en/article/494881
https://daneshyari.com/article/494881
https://daneshyari.com

