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h i g h l i g h t s

• An incremental sparse GP regression algorithm for STEAM problems is proposed.
• The benefits of GP-based approaches and incremental smoothing are combined.
• The approach elegantly handles asynchronous and sparse measurements.
• Results indicate significant speed-up in performance with little loss in accuracy.
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a b s t r a c t

Recent work on simultaneous trajectory estimation and mapping (STEAM) for mobile robots has used
Gaussian processes (GPs) to efficiently represent the robot’s trajectory through its environment. GPs have
several advantages over discrete-time trajectory representations: they can represent a continuous-time
trajectory, elegantly handle asynchronous and sparse measurements, and allow the robot to query the
trajectory to recover its estimated position at any time of interest. Amajor drawback of the GP approach to
STEAM is that it is formulated as a batch trajectory estimationproblem. In this paperweprovide the critical
extensions necessary to transform the existing GP-based batch algorithm for STEAM into an extremely
efficient incremental algorithm. In particular, we are able to vastly speed up the solution time through
efficient variable reordering and incremental sparse updates, which we believe will greatly increase the
practicality of Gaussian process methods for robot mapping and localization. Finally, we demonstrate the
approach and its advantages on both synthetic and real datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction & related work

Simultaneously recovering the location of a robot and a map of
its environment from sensor readings is a fundamental challenge
in robotics [1–3]. Well-known approaches to this problem, such as
square root smoothing and mapping (SAM) [4], have focused on
regression-based methods that exploit the sparse structure of the
problem to efficiently compute a solution. The main weakness of
the original SAM algorithm was that it was a batch method: all of
the data must be collected before a solution can be found. For a
robot traversing an environment, the inability to update an esti-
mate of its trajectory online is a significant drawback. In response
to this weakness, Kaess et al. [5] developed a critical extension to
the batch SAM algorithm, iSAM, that overcomes this problem by
incrementally computing a solution. The main drawback of iSAM,
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was that the approach required costly periodic batch steps for
variable reordering to maintain sparsity and relinearization. This
approachwas extended in iSAM2.0 [6], which employs an efficient
data structure called the Bayes tree [7] to perform incremental
variable reordering and just-in-time relinearization, thereby elim-
inating the bottleneck caused by batch variable reordering and re-
linearization. The iSAM 2.0 algorithm and its extensions arewidely
considered to be state-of-the-art in robot trajectory estimation and
mapping.

The majority of previous approaches to trajectory estimation
and mapping, including the smoothing-based SAM family of algo-
rithms, have formulated the problem in discrete time [1–4,6,8,9].
However, discrete-time representations are restrictive: they are
not easily extended to trajectories with irregularly spaced way-
points or asynchronously sampled measurements. A continuous-
time formulation of the SAM problem where measurements
constrain the trajectory at any point in time, would elegantly
contend with these difficulties. Viewed from this perspective, the
robot trajectory is a function x(t), that maps any time t to a robot
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state. The problem of estimating this function alongwith landmark
locations has been dubbed simultaneous trajectory estimation and
mapping (STEAM) [10].

Tong et al. [11] proposed a Gaussian process (GP) regression
approach to solving the STEAM problem. While their approach
was able to accuratelymodel and interpolate asynchronous data to
recover a trajectory and landmark estimate, it suffered fromsignifi-
cant computational challenges: naiveGaussian process approaches
to regression have notoriously high space and time complexity.
Additionally, Tong et al.’s approach is a batch method, so updating
the solution necessitates saving all of the data and completely re-
solving the problem. In order to combat the computational burden,
Tong et al.’s approach was extended in Barfoot et al. [10] to take
advantage of the sparse structure inherent in the STEAM problem.
The resulting algorithm significantly speeds up solution time and
can be viewed as a continuous-time analog of Dellaert’s original
square-root SAM algorithm [4]. Unfortunately, like SAM, Barfoot
et al.’s GP-based algorithm remains a batch algorithm, which is
a disadvantage for robots that need to continually update the
estimate of their trajectory and environment.

In this work, we provide the critical extensions necessary to
transform the existing Gaussian process-based approach to solving
the STEAM problem into an extremely efficient incremental ap-
proach. Our algorithm elegantly combines the benefits of Gaussian
processes and iSAM 2.0. Like the GP regression approaches to
STEAM, our approach can model continuous trajectories, handle
asynchronous measurements, and naturally interpolate states to
speed up computation and reduce storage requirements, and, like
iSAM 2.0, our approach uses a Bayes tree to efficiently calcu-
late a maximum a posteriori (MAP) estimate of the GP trajectory
while performing incremental factorization, variable reordering,
and just-in-time relinearization. The result is an online GP-based
solution to the STEAM problem that remains computationally effi-
cient while scaling up to large datasets.

The present paper is an extension of the work presented
in [12,13]. As a further contribution, in this manuscript we elabo-
rate more on variable re-ordering that is key to making both batch
and incremental GP-regression computationally more efficient,
and we study the performance of the proposed approach in an
additional real-world dataset. Furthermore, we release an efficient
implementation of the approach developed herein as open source
code.1

2. Batch trajectory estimation & mapping as Gaussian process
regression

We begin by describing how the simultaneous trajectory es-
timation and mapping (STEAM) problem can be formulated in
terms of Gaussian process regression. Following Tong et al. [11]
and Barfoot et al. [10], we represent robot trajectories as functions
of time t sampled from a Gaussian process:

x(t) ∼ GP(µ(t),K(t, t ′)), t0 < t, t ′. (1)

Here, x(t) is the continuous-time trajectory of the robot through
state-space, represented by aGaussian processwithmeanµ(t) and
covariance K(t, t ′) functions.

We next define a finite set of measurements:

yi = hi(θi)+ ni, ni ∼ N (0,Ri), i = 1, 2, . . . ,N. (2)

The measurement yi can be any linear or nonlinear functions of a
set of related variables θi plus some Gaussian noise ni. The related
variables for a range measurement are the robot state at the cor-
responding measurement time x(ti) and the associated landmark

1 Please check out the code at https://github.com/XinyanGT/online-gpslam-
code.

location ℓj. We assume the total number of measurements is N ,
and the number of trajectory states at measurement times isM .

Based on the definition of Gaussian processes, any finite collec-
tion of robot states has a joint Gaussian distribution [14]. So the
robot states at measurement times are normally distributed with
mean µ and covariance K.

x ∼ N (µ,K), x = [x⊺1 . . . x⊺M ]
⊺, xi = x(ti)

µ = [µ
⊺
1 . . . µ

⊺
M ]

⊺, µi = µ(ti), Kij = K(ti, tj).
(3)

Note that any point along the continuous-time trajectory can be
estimated from the Gaussian process model. Therefore, the trajec-
tory does not need to be discretized and robot trajectory states
do not need to be evenly spaced in time, which is an advantage
of the Gaussian process approach over discrete-time approaches
(e.g. Dellaert’s square-root SAM [4]).

The landmarks ℓ which represent the map are assumed to
conform to a joint Gaussian distribution with mean d and covari-
ance W (Eq. (4)). The prior distribution of the combined state θ
that consists of robot trajectory states at measurement times and
landmarks is, therefore, a joint Gaussian distribution (Eq. (5)).

ℓ ∼ N (d,W ), ℓ = [ℓ
⊺
1 ℓ

⊺
2 . . . ℓ

⊺
O]

⊺ (4)

θ ∼ N (η,P), η = [µ⊺ d⊺
]
⊺, P =

[
K

W

]
. (5)

To solve the STEAM problem, given the prior distribution of the
combined state and the likelihood of measurements, we compute
the maximum a posteriori (MAP) estimate of the combined state
conditioned on measurements via Bayes’ rule:

θ∗ ≜ θMAP = argmax
θ

p(θ|y) = argmax
θ

p(θ)p(y|θ)
p(y)

= argmax
θ

p(θ)p(y|θ) = argmin
θ

(− log p(θ)− log p(y|θ))

= argmin
θ

(
∥θ − η∥2P + ∥h(θ)− y∥2R

)
(6)

where the norms are Mahalanobis norms defined as: ∥e∥2Σ =
e⊺Σ−1e, and h(θ) and R are the mean and covariance of the mea-
surements collected, respectively:

h(θ) = [h1(θ1)⊺ h2(θ2)⊺ . . . hN (θN )⊺]⊺ (7)

R = diag(R1,R2, . . . ,RN ). (8)

Because both covariance matrices P and R are positive definite,
the objective in Eq. (6) corresponds to a least squares prob-
lem. Consequently, if some of the measurement functions hi(·)
are nonlinear, this becomes a nonlinear least squares problem,
in which case iterative methods including Gauss–Newton and
Levenberg–Marquardt [15] can be utilized; in each iteration, an
optimal update is computed given a linearized problem at the
current estimate. A linearization of a measurement function at
current state estimate θ̄i can be accomplished by a first-order
Taylor expansion:

hi
(
θ̄i + δθi

)
≈ hi(θ̄i)+

∂hi

∂θi

⏐⏐⏐⏐
θ̄i

δθi. (9)

Combining Eq. (9) with Eq. (6), the optimal increment δθ∗ at the
current combined state estimate θ̄ is

δθ∗=argmin
δθ

(
∥θ̄+δθ−η∥

2
P + ∥h(θ̄)+Hδθ−y∥2R

)
(10)

H = diag(H1,H2, . . . ,HN ), Hi =
∂hi

∂θi

⏐⏐⏐⏐
θ̄i

(11)

where H is the measurement Jacobian matrix. To solve the linear
least squares problem in Eq. (10), we take the derivative with
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