
Robotics and Autonomous Systems 86 (2016) 1–12

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Multi-agent motion planning using Bayes risk✩

Matthew J. Bays a,∗, Apoorva Shende b, Daniel J. Stilwell b,∗∗

a Naval Surface Warfare Center, Panama City Division, Panama City, FL 32407, United States
b Bradley Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA 24060, United States

h i g h l i g h t s

• We introduce an approach to multi-agent motion control.
• Approach jointly minimizes a cost function utilizing Bayes risk for classification.
• We apply the framework in the context of target interception and collision avoidance.
• Framework uses a particle approach combined with mixed integer linear programming.
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a b s t r a c t

We introduce a novel approach to controlling themotion of a team of agents so that they jointlyminimize
a cost function utilizing Bayes risk. Bayes risk is a useful measure of performance for applications where
agents must perform a classification task, but is often difficult to compute analytically for many appli-
cations involving agent state variables. We use a particle-based approach that allows us to approximate
Bayes risk and express the optimization problem as amixed-integer linear program. Byminimizing Bayes
risk, agents are able to account explicitly for the costs associated with correct and incorrect classification.
We illustrate our approach with a target interception problem in which a team of mobile agents must
intercept mobile targets that are likely to enter a specified area in the near future. We show that the co-
operative agent motion that minimizes a cost function utilizing Bayes risk is an efficient way to achieve
selective interception.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We investigate amethod for coordinating themotion of a group
of agents or mobile sensors to improve performance of a classifi-
cation task. We propose a particle-based approximation of Bayes
risk in order to develop a cost function to guide the motion of
the agents. Bayes risk is the prior-averaged cost incurred by a de-
cision rule [1]. Bayesian probabilistic techniques are particularly
relevant for classification-based feedback control since they inher-
ently update the probabilistic distribution of the underlying state
as new observations become available. The updated state distribu-
tion that is computed using Bayesian filtering techniques can be
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used to compute the Bayes risk corresponding to the current ob-
servations. Prior work on cooperative control has often addressed
optimal sensormotion for improved sensing performance, as in the
case of maximizing information [2]. In typical cases, sensor mo-
tions produce optimal state estimates, but would not necessarily
lead to optimal, or even improved, classification performance. The
research into the decision-making and classification has largely
been the work of the statistics and signal processing community,
where an optimal decision rule is generated for the observations al-
ready gathered. A good example of these contributions in the area
of target classification is [3]. The primary contribution of our work
is attempting to bridge the gap between classification and agent
motion control (e.g. cooperative control as in [4]) by proposing a
methodology forwhich cooperative sensormotion is used to inten-
tionally improve classification performance. We provide context
for our Bayes risk-basedmotion control using a target interception
application.

Bayes risk has been used frequently in the signal processing
community; see for example [5–8]. However, its use in motion
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planning has been limited. Blackmore et al. in [9] develop an ap-
proach for model selection from a family of dynamic systems us-
ing a special case of Bayes risk that is equivalent to the probability
of error. In their approach, control signals for the dynamic system
are computed that minimize an upper bound for the probability of
error. We generate control signals that affect the paths for a team
of mobile agents. However, we choose the control signals to mini-
mize an approximation to a more general form of Bayes risk.

The problem of area protection has been studied using a vari-
ety of techniques. Smith uses formal geometric approaches in [10]
to choose paths for vehicles servicing randomly generated tar-
gets whose locations are deterministically known. In contrast, our
particle-based solution to target interception takes into account
uncertainty in target locations at every time-step. Agmon devel-
ops a novel patrol scheme in order to minimize the probability of
adversary penetration in [11]. Our work complements Agmon’s by
addressing the same scenario, but optimizing the agents’ reactions
to incoming targets instead of optimizing the standard patrol pat-
tern. Beard uses a k-best paths graph search to intercept determin-
istic targetswithin an area in [12]. Like ourwork, Earl andD’Andrea
studied the target interception problem in a MILP framework [13].
However, we introduce a formal riskmetric, and generalize system
dynamics from a deterministic framework to incorporate stochas-
tic dynamics and noise. Additionally, we formulate the problem
using a receding-horizon control approach, limiting the planning
horizon to a subset of the total mission time and thus complexity
of the problem. Chasparis and Shamma solve the problem of area
protection in [14] using a discrete-time, discrete-space resource
allocation framework. Control policies are modeled as the tran-
sition of resources from cell to cell. The objective of maximizing
the interceptions of enemy vehicles is modeled using a linear cost
function. In contrast, our work explicitly addresses Bayesian risk.
Shende solves the problem of stochastic target interception using
closed-form properties of the Gaussian distribution in [15] for in-
stances where the system noise is normally distributed, however
does not use Bayes risk as a cost function.

The use of Bayes risk for collision avoidance has been pre-
viously demonstrated by Jansson and Gustafsson for automobile
applications in [16]. In their work, a binary decision rule was im-
plemented. Their decision rule was optimal in the Bayes risk sense,
and ifmet, a collision avoidancemaneuverwas executed. Ourwork
explicitly couples agent motion control to a cost function utilizing
Bayes risk, and as a result, minimizes the risk of a collision.

This paper is outlined as follows. We present the general prob-
lem formulation we use for our agent-based motion control and
target interception, its relation to Bayes risk, and our framework’s
underlying assumptions in Section 2. We then propose a particle-
based approximation for calculating the necessary probabilities
and thereby Bayes risk in Section 3. We extend the particle frame-
work to incorporate collision avoidance in Section 4. Specific esti-
mation techniques used in order to create the particle framework,
and a discussion of the potential impact of assumptions on real im-
plementations are provided in Section 5. Finally, we present simu-
lation results of the framework using the interception-only model
as well as the collision avoidance extension in Section 6.

2. Problem formulation & Bayes risk

In our application of target interception, M cooperative agents
and N targets maneuver within a convex area G ⊂ R2. The
agents must prevent the targets from entering a subset A ⊂ G
by selectively intercepting those targets that will enter the area of
protection. There is uncertainty associated with initial target and
agent positions, as well as their dynamics. Additional uncertainty
is also associated with target measurements from sensors on-
board the agents. The problem is to develop a control law over

the optimization interval [t, t + T ] to guide the cooperative agents
such that they intercept all the targets that would have entered
the area of protection if not intercepted, and to avoid taking action
against targets that would not have entered the area. Additionally,
we assume that the targets are not adversarial. That is, the targets
do not perform control actions taking into account the states of the
agents.

2.1. The target interception problem

We will now define the decision problem with respect to mo-
tion planning and classification. At each time τ ∈ [t, t + T ] within
the optimization interval, we consider a target trajectory over the
interval [τ , τ + T ′

]. We will call this horizon the threat assessment
interval. Note that the threat assessment horizon T ′ and planning
horizon T are independently specified. The trajectory of target i is
classified to be within the set of trajectories considered a threat, or
the set of trajectories considered not a threat. The event that the
trajectory of target i over the interval [τ , τ + T ′

] is a threat is de-
noted asΩi(τ ). The event that the target trajectory iswithin the set
of trajectories considered not a threat is denoted as∼Ωi(τ ). Target
i is classified as a threat if it enters the area of protection A during
this interval. A correct decision that should be reflected through
the agent control actions is to intercept the target. This decision is
denoted Γi(τ ) for target i at time τ . A trajectory that does not en-
ter an area of protection within the time horizon [τ , τ + T ′

], or has
been intercepted by an agent before τ , is categorized as not a threat
(∼Ωi(τ )), and corresponds to a correct decision of non-interception
(∼Γi(τ )). For a target, the decision rule that must hold true for the
target interception problem may be written as

Ωi(τ ) → Γi(τ
′) (1)

∼Ωi(τ ) →∼ Γi(τ
′) (2)

for some time τ ′ < τ ∈ [t, t + T ]. However, (1)–(2) is a decision
rule that would only work if the problem were purely determin-
istic. In order to take into account the probabilistic nature of the
target interception problem, we turn to Bayes risk.

2.2. Bayes risk for target interception

In the following sections, we describe an agent control law de-
signed to minimize the cumulative Bayes risk associated with the
target interception problem involving the threat and interception
events defined in (1)–(2). Let RΩi(τ ) be the cost incurred condi-
tioned on hypothesis Ωi being true at time τ . In Bayes risk termi-
nology, RΩi(τ ) is often called the conditional risk associated with
the hypothesis Ωi(τ ) being true. Similarly, R∼Ωi(τ ) is the condi-
tional risk associated with the hypothesis ∼Ωi(τ ) being true at
time τ . The Bayes risk at time τ is then given by

Ri(τ ) = RΩi(τ )P(Ωi(τ )) + R∼Ωi(τ )P(∼Ωi(τ )), (3)

where P(Ωi(τ )) and P(∼Ωi(τ )) are the priors of the two classes at
time τ . The conditional risks RΩi(τ ) and R∼Ωi(τ ) are written

R∼Ωi(τ ) = C0,0P(∼Γi(τ )| ∼ Ωi(τ )) + C1,0P(Γi(τ )| ∼ Ωi(τ )) (4)
RΩi(τ ) = C0,1P(∼Γi(τ )|Ωi(τ )) + C1,1P(Γi(τ )|Ωi(τ )),

where C0,0, C1,0, C0,1 and C1,1 are user-selected coefficients associ-
ated with the cost of correct and incorrect classification. From the
standard definition of Bayes risk, C0,0 and C1,1 are the costs of cor-
rect classification, and C1,0 and C0,1 are the costs of false-alarm and
missed detection, respectively [1]. If we assumeΩi(τ ) and Γi(τ ) to
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