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This paper presents a novel and computationally efficient modeling method for the dynamics of flexible-link 

robot manipulators. In this method, a robot manipulator is decomposed into components/elements. The com- 

ponent/element dynamics is established using Newton–Euler equations, and then is linearized based on the 

acceleration-based state vector. The transfer matrices for each type of components/elements are developed, and 

used to establish the system equations of a flexible robot manipulator by concatenating the state vector from the 

base to the end-effector. With this strategy, the size of the final system dynamic equations does not increase with 

the number of joints or the number of link beam elements that each link is decomposed. The developed method 

intends to avoid the traditional computation of the global system dynamic equations that usually have large 

size for flexible robot manipulators, and only involves calculating and transferring component/element dynamic 

equations that have small size. The numerical simulations and experimental testing of flexible-link manipulators 

are conducted to validate the proposed methodologies. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Traditional industrial robot manipulators are built to be massive in 
order to increase stiffness, and therefore move at speeds much lower 
than the fundamental natural frequency of the system due to the limita- 
tions in the joint actuator output torque. The practical solution to this 
problem is to design and construct light weight manipulators, which 
are capable of moving swiftly. In contrast to the rigid manipulators, 
light weight manipulators offer advantages such as higher speed, bet- 
ter energy efficiency, improved mobility, and higher payload-to-arm 

weight ratio. However, at high operational speed and acceleration, iner- 
tial forces of moving components become quite large, leading to signifi- 
cant deformation in the light links, and generating unwanted vibration. 
Hence, elastic vibrations of light weight links must be taken into account 
in the dynamic modeling, design, and control of the robot manipulators. 

In the past decades, significant efforts have been made into the in- 
vestigation of dynamic modeling of manipulators with flexible compo- 
nents [1–5] . Different discretization techniques, such as the finite ele- 
ment method (FEM) [6–13] , the assumed mode method (AMM) [14–18] , 
and the lumped parameter method (LPM) [19–22] , have been reported 
extensively for modeling the flexible dynamics of robot manipulators. 
However, the matrix size of global dynamic model of a robot manipu- 
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lator increases with the number of the Degrees of Freedom (DOF), and 
therefore heavy computation of dynamic modeling is still a big concern 
in terms of real-time control. 

An alternative to FEM, AMM and LPM, the transfer matrix method 
(TMM) can be used to model linear and continuous elements without 
discretization [23–25] . However when the traditional TMM method 
is applied to multiple DOF mechanisms and manipulators, the global 
dynamics still needs to be established using Lagrange ’s equation or 
Hamilton ’s principle. The number of the global dynamic equations in- 
creases with the DOF of the system. Using the integration procedure, the 
discrete-time transfer matrix method (DT-TMM) was presented to per- 
form the dynamic analysis of a large system that consists of a large num- 
ber of subsystems, each of which is a simple dynamic element [26] . The 
DT-TMM was further developed to model multi-body system dynamics 
using linearization and integral schemes [27–29] . With the DT-TMM, 
the global dynamic equations using the traditional ways are avoided, 
and the matrix size of the dynamic equations does not increase with the 
DOF of multi-body systems. Therefore, the computation efficiency can 
be significantly improved. 

In this work, the DT-TMM is extended to the dynamic model- 
ing of light weight robot manipulators considering the link flexibility. 
Firstly, the basic principle and procedure of the DT-TMM are addressed 
with an overview in Section 2 . Secondly, the detailed methodology is 
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Fig. 1. Flow chart of the algorithm for the transfer matrix method. 

presented for the dynamic modeling of flexible-link robot manipula- 
tors. State vectors and transfer matrices are defined, and kinematic and 
dynamic models are established for each components/elements decom- 
posed from a robot manipulator. The linearization is conducted for com- 
ponent/element kinematic and dynamic equations. The DT-TMM solv- 
ing process is conducted with the formulation of component/element 
transfer matrices and generation of system dynamics by concatenating 
the state vectors from the base to the end-effector of the robot manipula- 
tor. Thirdly, the simulations and analyses of a 1-DOF robot manipulator 
with single flexible link and a 3-DOF robot manipulator with three flex- 
ible links are provided to demonstrate the developed DT-TMM. In addi- 
tion, the experimental testing of a single flexible-link robot manipulator 
is performed to validate the modeling method. 

2. Overview of DT-TMM: principles and procedures 

The principle and procedure of the DT-TMM is illustrated with the 
schematic diagram in Fig. 1 . With the proposed DT-TMM method, the 
global dynamics calculation using the traditional ways is avoided , and 
only the computation of element/component dynamics is conducted and 
transferred across the elements/components. The matrix size of the fi- 
nal system equations to solve dynamics does not increase with either 
the DOF of a robot manipulator or the number of link elements that 
are decomposed from flexible links. Apparently, the computation cost is 
significantly reduced. 

The decomposing process of a 2-dimensional (2-D) robot manipula- 
tor is shown in Fig. 2 . This 2-D robot manipulator is decomposed int of n 
joints and n links. Each links is further broken down into k link elements 
and 𝑘 + 1 connection mountings. 𝑙 𝑖,𝑗 

𝑓𝑙𝑏 
represents the j th ( 𝑗 = 1 , 2 , … , 𝑛 − 1) 

flexible link element of the i th link, 𝑐𝑚 − 𝑓𝑓 𝑖,𝑗 the j th connection mount- 

Fig. 2. This picture shows the process of decomposing a robot arm to elements/ compo- 

nents ( n links: 𝑙 1 , 𝑙 2 , … , 𝑙 𝑛 and n joints: 𝑗 1 , 𝑗 2 , … , 𝑗 𝑛 ). Each link is further decomposed into 

k link beam elements and 𝑘 + 1 connection mountings. 

Fig. 3. State vectors and coordinate system. Deformation and length are measured in the 

local reference frame, denoted by subscript 2 . For simplicity, the external forces F x and 

F y , and moment M e are applied at the center of gravity. 

ing with flexible inboard-flexible outboard of the i th link, 𝑐𝑚 − 𝑟𝑓 𝑖 the 
connection mounting between the i th link and the i th joint, and 𝑐𝑚 − 𝑓𝑟 𝑖 
the connection mounting between the i th link and the 𝑖 + 1 th joint. The 
dynamic analyses of these components/elements are detailed in follow- 
ing sections. 

3. State vectors and transformation 

In DT-TMM, the state vector is defined as a column vector that rep- 
resents the internal forces (forces q x , q y , q z , and moments M x , M y , M z ) 
and displacement (rigid motions x, y, z, 𝜃x , 𝜃y , 𝜃z and deformation modal 
coordinates 𝑤 

1 , 𝑤 

2 , … , 𝑤 

𝑛 ) at a particular location within a system. For 
the acceleration-based integral scheme, the state vector is defined at any 
cross-section of a flexible link in 2-D space as 

𝑧 = [ 

acceleration 
⏞⏞⏞

𝑥̈ , ̈𝑦 , ̈𝜃 , 𝑀, 𝑞 𝑥 , 𝑞 𝑦 , 

modal acceleration 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑤̈ 

1 , 𝑤̈ 

2 , … , 𝑤̈ 

𝑛 , 1] 𝑇 (1) 

In this work, the state vector is defined based on 2-D (planar) robot 
manipulators, and only the lateral deformation of flexible links is con- 
sidered. The sign convention of elements in the state vector related to 
the reference coordinate system is illustrated in Fig. 3 . A position coor- 
dinate or an orientation angle is defined as positive when it is in the 
positive direction of the coordinate axis. The inboard force or outboard 
moment applied on the element is positive if it is in the positive direc- 
tion of the coordinate axis, and outboard force or inboard moment on 
the element is negative if it is in the positive direction of the coordinate 
axis [27] . The system inboard side is defined to be the base, and the 
system outboard side is defined to be the end-effector. The inboard side 
of a component/element is defined to be the side close to the base of 
a robot manipulator, and the outboard side of a component/element is 
defined to be the side close to the end-effector. 

In the DT-TMM, a transfer matrix is employed to transform the state 
vector form one end of the component to the other end of the compo- 
nent. A transfer matrix is formulated based on the kinematic and dy- 
namic equations of the component. For a robot manipulator, the dimen- 
sion of the system transfer matrix U sys depends on and matches the size 
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