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a b s t r a c t 

Human motion intent (HMI) acquiring by using physical human robot interaction (pHRI) information is one of 

the most crucial issues for lower extremity exoskeleton control. The mapping from the pHRI information to the 

HMI is complicated and nonlinear since the wearer is in the control loop, which is difficult to be modeled directly 

via mathematical tools. The nonlinear approximation can be learned by using machine learning approaches, e.g., 

Gaussian Process (GP) regression, which is suitable for high-dimensional and small-sample nonlinear regression 

problems. However, GP regression is restrictive for large scale datasets due to its computation complexity. In 

this paper, an online sparse GP algorithm is proposed to learn the HMI, where the input is the pHRI signal and 

the output is the angular increment of the active joints, i.e., the knee joints. The data of HRI is collected by the 

torque sensor and the angular position of the active joint is measured by the optical position sensor respectively. 

The pHRI signal is dealt with Kalman smoother to achieve the following functions, i.e., (1) eliminating noise 

and (2) predicting forward. The learned HMI via the online sparse GP regression algorithm is regarded as the 

reference trajectory of the lower extremity exoskeleton. A fuzzy-PID control strategy is designed to drive the 

robotic exoskeleton to follow the estimated HMI. Prototype experiments are performed on the subjects who wear 

the exoskeleton system to walk on different terrains without any transition. The experimental results validated 

the effectiveness of the proposed algorithm. The online sparse GP regression algorithm is capable of learning the 

HMI based on the pHRI and the fuzzy-PID can shadow the HMI quite well. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Wearable robots are worn by operators to enhance the power to 
assist walking or carry heavy loads. This kind of robotic system has 
the similar mechanical structure parallel with human limbs. In recent 
years, many advances and progress have been made in the development 
of wearable exoskeletons. A program, Exoskeletons for Human Perfor- 
mance Augmentation (EHPA), was sponsored by the DARPA in 2000 and 
aimed at increasing and improving the soldiers ’ capabilities [1] . There 
are several important products in the process of EHPA, e.g., Berkeley 
Lower Extremity Exoskeleton (BLEEX) [2] , ExoClimber, ExoHiker and 
HULC [3] . In the field of wearable robots, University of Tsukuba also 
developed a wearable exoskeleton, named Hybrid Assistive Limb (HAL), 
for performance augmentation and limb rehabilitation [4,5] . The wear- 
able exoskeleton robot is in essence a human-robot cooperation system, 
where the human operator is located in the control loop. Many kinds 
of wearable exoskeletons are controlled based on the analysis of walk- 
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ing gait, e.g. Soft Exosuit [6] , ReWalk [7] , and Nurse Robot Suit [8] . 
However, they defined the desired trajectory beforehand and driven the 
exoskeleton to follow the predefined trajectory, i.e., the HMI estimation 
that represents the human natural movement is not included in those 
systems. 

The HMI estimation is the foundation of the exoskeleton control. In 
general, control strategies can be classified according to the ways of 
the HMI estimation, i.e., biomedical signals measured directly from the 
user body, e.g., Electromyographic (EMG), physical HRI signals, e.g., 
force or torque signals generated at the interaction cuffs during move- 
ment, and mechanical signals only from exoskeletons themselves [9] . 
Indeed, the control procedure of assistive wearable exoskeletons can be 
followed by two steps, i.e., (1) estimating the HMI, and (2) following the 
HMI to achieve the motion coordination between users and exoskele- 
tons. The HAL system uses an EMG-based system, i.e. skin-surface EMG 

electrodes placed on the wearer’s body, to estimate the HMI and applies 
a closed loop control strategy based on reference walking patterns to 
drive the mechanical structure [10] . The BLEEX system uses the force 

http://dx.doi.org/10.1016/j.rcim.2017.08.007 

Received 18 May 2016; Received in revised form 11 July 2017; Accepted 10 August 2017 

Available online 18 August 2017 

0736-5845/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.rcim.2017.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/rcim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2017.08.007&domain=pdf
mailto:scdxhgd@gmail.com
mailto:dongwei@hit.edu.cn
http://dx.doi.org/10.1016/j.rcim.2017.08.007


Y. Long et al. Robotics and Computer–Integrated Manufacturing 49 (2018) 317–327 

sensor, placed on the end of cylinder rod, to estimate the HMI and de- 
sign a control strategy called sensitivity amplification control (SAC) to 
drive the exoskeleton to react to human behaviors properly [11] . In this 
paper, physical HRI signals collected by torque sensors are proposed to 
estimate the HMI. 

The HMI includes strictly three components, i.e., (1) walking phases 
to judge whether the leg is located in the swing or stance, (2) kinemat- 
ics information of limbs, e.g., position, velocity and acceleration, (3) 
kinetic information, e.g., joint torque. In this paper, the HMI is defined 
as the angular position of the active joints, i.e., the knee joins. The walk- 
ing phase is identified by the ground reaction forces. Indeed, acquiring 
and estimating the HMI by using physical HRI signals is an important 
hot research topic in human-robot collaborative control especially for 
assistive exoskeleton systems. If the HMI can be estimated online accu- 
rately, it is possible to improve the performance of exoskeletons [12] . 
Based on pHRI signals, collected by force or torque sensors (placed on 
the robot links not human body or human exoskeleton interface), the 
HMI can be estimated. Control strategies can be designed to drive the 
exoskeleton to shadow the estimated HMI [13] . However, due to the 
complex physical properties of human limbs and exoskeleton systems, 
the appropriate relationship between the pHRI and the HMI, e.g., the 
angular position of the joints cannot be clearly determined by using 
mathematical model. Some researchers reported the results of HMI es- 
timation, e.g., joint kinematics or kinetics, can be attained by adopting 
RBFNN online [14] , and using GP regression to search the desired actu- 
ating torque [15] . Those reported methods, however, hardly mentioned 
the problem of online computation complexity and the estimated HMI, 
indeed, lagging behind the real user’s HMI. In our work, the Kalman 
filter is utilized to deal with the pHRI signal for two considerations, 
i.e., eliminating noises and providing prediction forward. Therefore the 
measured pHRI can be smoothed and predicted to compensate the time 
delay [16] . 

Since the relationship between the physical HRI and the HMI is com- 
plex and nonlinear, it is difficult to model it by using mathematical ap- 
proaches. GP is a general supervised learning method which is widely 
implemented in robotics, e.g., system model learning [17] , mobile robot 
localization [18] , and interface model learning [19] . A GP is suitable 
for high-dimensional and small-sample nonlinear regression problems. 
A general GP regression is restrictive for large scale datasets due to its 
computation cost, which limits its application in control schemes. Two 
main approaches have been developed to deal with the problem, i.e., 
sparse GP [20] and the sparse pseudo-input GP (SPGP) [21,22] . The 
sparse GP, which needs to choose an appropriate subspace to essentially 
summarize the original input space, is the most effective method to re- 
duce the computation complexity [23] . Sparse GPs can be expressed as 
exact inference under different modifications of the original GP prior 
for low-cost approximations. 

As discussed previously, once the HMI is estimated and obtained, the 
control strategy should be designed to drive the exoskeleton to shadow 

the estimated HMI accurately, finally to achieve the human-exoskeleton 
motion coordination. Control strategies of the lower extremity exoskele- 
ton can be divided into two categories, i.e., model-based and model- 
free. The model-based control strategy is applied based on the dynamic 
model of the exoskeleton system. In the BLEEX, the lower extremity ex- 
oskeleton is modeled with physical characteristics of the system. Based 
on the dynamic model, the control strategy named SAC is designed to 
aid the user’s movement [24] . The dynamic model in the BLEEX is de- 
pendent on the walking phases, which has three different forms, i.e., 
the single support, the double support, and the double support with 
redundancy [25] . Since the exoskeleton is tightly coupled and highly 
nonlinear, it is difficult to attain an accurate and appropriate dynamic 
model using mathematical approaches. The model-free control strategy 
is not dependent on the dynamic model of the exoskeleton system. In 
general, model-free control strategies can be classified into the follow- 
ing modes, i.e., position control, torque/force control and interaction 
force control. The position control scheme is utilized to drive the ex- 

oskeleton to track the desired trajectory, e.g., RUPERT [26] and HAL 
[27] . The torque/force control is aimed at following the commanded 
torque/force trajectory while the primary goal of the interaction force 
control scheme is utilized to ensure the interaction force close to 
zero. 

In this paper, we propose to choose a subspace of dataset for train- 
ing to reduce computation cost by using Grey Relation Analysis (GRA). 
Through GRA, the training dataset stemming from the original dataset 
can be obtained. We propose to use torque sensors to measure the HRI 
signals that represent human-exoskeleton interaction information di- 
rectly. The training dataset is collected when the human user wears 
the exoskeleton system to perform unconstraint motions. A subspace 
is selected to reduce the size of input space to eliminate the com- 
putation complexity. The sparse GP regression algorithm is designed 
to learn the HMI of the user. The learned HMI is the reference in- 
put of the controller which is an adaptive motion control strategy 
using fuzzy logic system. The model-free position control strategy is 
adopted to drive the lower extremity exoskeleton to shadow the esti- 
mated HMI. However, since the exoskeleton system is subject to load 
changes, friction and external disturbances, the conventional position 
control, e.g., proportion integral derivative (PID) is difficult to achieve 
the desired tracking performance. This kind of position control strat- 
egy is highly dependent on PID parameters. In this work, fuzzy infer- 
ence system is adopted to update the parameters of PID in real time 
according to the real tracking performance, which means the input vari- 
ables of the fuzzy system are the tracking error and its changing rate. 
To verify the proposed algorithms, experiments on different terrains are 
performed. 

2. Exoskeleton system under studying 

Exoskeletons are anthropomorphic devices that perform similar 
movement with the human body. The design of an exoskeleton is de- 
pendent on human motion analysis, i.e., Clinical Gait Analysis (CGA), 
which gives human limb joint angles, torques and powers for typi- 
cal walking patterns. In the design, the number of mechanical leg De- 
grees of Freedom (DoFs) is required to be close to the number of hu- 
man lower limb DoFs. In general, those DoFs with the highest power 
consumption during gait cycles should be actuated while the remain- 
ing DoFs are passive with elastic elements. The proposed lower ex- 
tremity has only one active DoF placed on the knee joint for each 
leg, as shown in Fig. 1 . The prototype architecture of the exoskele- 
ton robot, which has three main components, i.e., the leg segments 
with length adjustment mechanism, the trunk and the wearable shoes 
[28,29,30] . 

The leg segment is attached to the waist through a connection mech- 
anism. All wires of control module are embedded into the mechanical 
structure through the wiring slot. The lower extremity exoskeleton is 
suitable for operators with the height in the range of 168 mm − 188 mm, 
where length of thigh can be adjusted in the range of 430 mm − 480 mm 

while the shank can be adjusted in the range of 470 mm − 520 mm. The 
trunk of the exoskeleton includes the following parts, i.e., the connector 
to the leg, the adjustment mechanism for the waist width, the back- 
pack and the elastic element. The elastic element with enough stiff- 
ness is utilized to support the weight of mechanism and transfer the 
weight to the ground. The length of waist can be adjusted in the range 
of 340 mm − 400 mm. The backpack will be connected to an ergonomic 
mechanism which is tied with the human torso to carry the control en- 
closure, the power package and other equipment. The wearable shoe is 
made of rubber in order to guarantee the flexibility. The thin upper sole 
is fixed by bolts. Pressure sensors are placed into the lower sole and all 
wires are tired together through connectors and transferred to the con- 
trol enclosure. The wearable shoe is connected with leg segment by the 
ankle joint. 
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