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A B S T R A C T

A stiffness of the parallel manipulators with linear limbs is analyzed by considering the inertial wrench of the
moving links and the constrained wrench. First, a formula is derived for solving the dynamic active and
constrained wrenches, the inertial wrench of moving links based on the principle of virtual work. Second, the
relationship between the elastic deformations of limbs and the dynamic active/constrained wrench and the
inertial wrench of moving links are discovered and analyzed. Third, a unified stiffness model of parallel
manipulators is established by considering the inertial wrench of moving links and the dynamic active/
constrained wrench. Fourth, a unified formula is derived for solving the elastic deformations of the moving
platform by considering the inertial wrench of the moving links and the dynamic active/constrained wrenches.
Finally, an analytic numerical example of the 3SPR-type parallel manipulator is given for solving its stiffness
and elastic deformation. The correctness of derived formulae of the stiffness and the elastic deformations are
verified by the analytic numerical solutions.

1. Introduction

Parallel manipulator (PM) has their special merits and has been
applied widely in some industries [6,20]. Stiffness is one of the
important indices for evaluating the PM performances, particularly
when the PM are used as the machine tools and the robot arm/legs, and
higher stiffness allows higher machining speed with higher accuracy of
the end-effector. However, it is challenging issue to establish a
precision stiffness model of various PMs. In this aspect, Gosselin [6]
discovered stiffness mapping relation of PMs. Portman et al. [20]
studied dynamic collinear stiffness of Gough-Stewart platform without
considering limbs' mass. Zhang et al. [28] proposed an elastodynamic
model for optimal design and performance improvement of the parallel
kinematic machine by counting natural frequencies in the workspace.
Yuan et al. [27] analyzed static stiffness and the dynamic stiffness of
cable-driven PMs as considering the effect of both cable mass and
elasticity by identifying the robot natural frequencies. Yan et al. [26]
analyzed the total deformation of specific parallelogram-type parallel
manipulators (PMs) using a strain energy method considering the
compliances of the mobile platform. Lum et al. [16] proposes to use a
structural optimization approach to synthesize and optimize the
topology, shape and size of the FPMs' sub-chains for achieving optimal
dynamic and stiffness properties. Hoevenaars et al. (2011) presented a

Jacobian-based stiffness analysis method for PMs with non-redundant
legs based on screw theory. Klimchik et al. [10] studied a stiffness
modeling for perfect and non-perfect PMs under internal and external
loadings to compute and compensate the compliance errors. Kim et al.
(2014) derived a leg stiffness matrix of PMs with serially connected legs
by considering the effect of passive joints using reciprocal screws. Wu
et al. [23,25,22,24] investigated the stiffness of several PMs and
studied their kinematics and dynamics. In order to enhance the
stiffness analysis of serial and PMs with passive joints, Pashkevich
et al. [17,18] presented a non-linear stiffness model, and presented a
stiffness modeling for over-constrained PMs with flexible links and
compliant actuating joints based on a multidimensional lumped-
parameter model. Aginaga et al. [1] proposed a methodology for
calculating the stiffness matrix of 6- RUS PM. Li and Xu [12] studied
the stiffness characteristics of a 3PUU PM by considering actuations
and constraints. Here, (R, P, U, C, S) represent (revolute, prismatic,
universal, cylinder, spherical) joints, respectively. Carbone and
Ceccarelli [2] deduced the stiffness matrix of a hybrid PM and analyzed
its stiffness performance. Cheng et al. [3] analyzed the stiffness
characteristics of the 3CPS PM based on the principle of virtual work.
Chi and Zhang [4] improved the system stiffness of the reconfigurable
PM to locate the highest system stiffness, single and multi-objective
optimizations. Enferadi et al. (2011) analyzed the stiffness of a 3-RRP
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spherical PM based on strain energy and Castigliano's theorem. Ivanov
and Corves [9] adopted a universal analytical method for stiffness-
oriented design of flexure hinge-based PM. Pinto et al. [19] proposed a
general methodology for obtaining static stiffness maps in lower
mobility PMs. Sadjadian and Taghirad [21] studied kinematic model-
ing and singularity and stiffness of a 3-DoF redundant PM. Enferadi,
Hoevenaarset, Kimal et al. proposed different stiffness analysis meth-
ods for PMs by neglecting inertial wrench of the moving links [7,8,11].
Lu et al. [13,15] studied the stiffness and the elastic deformation of
several PMs based on the principle of virtual work and using computer-
aided design variation geometry. Above studied have their merits and
different focuses.

However, up to now, it has not been found to establish the stiffness
model of PMs by considering the inertial wrench of the moving links
and the dynamic active/constrained wrench and to discover its
characteristics. In fact, the elastic deformations of PM generated by
the inertial wrench of the mass of kinematic chain are quite large.
Therefore, the inertial wrench of the moving links and the dynamic
active/constrained wrench must be added into the stiffness model of
PMs in order to solve the precision elastic deformations of PMs. For
this reason, this paper focuses on the establishment of the stiffness
model of PMs with linear limbs by considering the inertial wrench of
moving links and the dynamic active/constrained wrench and to solve
the precision elastic deformations of PMs.

2. General dynamics formula of PM

A dynamics formula is pre-condition for establishing the stiffness
model of parallel manipulators (PMs) by considering the inertial
wrench of moving links and the dynamic active/constrained wrench.
A general PM with n linear limbs is shown in Fig. 1a. It is composed of
a base B, a moving platform m, and n different linear limbs ri (i=1, …,
n) for connecting B and m. Here, B includes n connecting points Bi and
a central point O. m includes n connecting points bi and a central point
o.

Let δi be the unit vector of ri from Bi to bi. Let ei and ei are the
distance from o to bi and its vector. Let {gi}-xiyizi be a coordinate
system attached onto ri at its mass center gi (i=1, …, n). Let {m}-xyz be

a coordinate system attached onto m at o. Let {B}-XYZ be a coordinate
system attached onto B at O. Let ○ be the vector operator, ○ may be
one of (+, −, ×, •). Let u1 and u2 be two vectors or two matrixes. If U
can be solved from (u1 ○ u2) in {gi}, U and its components in {gi} and
{B} can be represented as follows:

U u u u u
U u u u u

= ∘ =   ( ∘ ),
= ∘ = ( ∘ ).

gi gi gi gi
1 2 1 2

1 2 1 2 (1)

Let Fa be the n×1 general input active wrench vector applied onto
ri, Fa includes u active forces and n-u active torques. Let Fc is the (6-
n)×1 general constrained wrench vector exerted onto ri; Fc includes k
constrained forces and 6-n-k constrained torques. Let (Fd, Td) be a
dynamic workload wrench applied onto m at o. Let (fpi, tpi) be an
inertial wrench of piston rod in ri in {B}. Let (fqi, tqi) be an inertial
wrench of cylinder in ri in {B}.

A general dynamics formula of PM with n linear active limbs has
been derived by [14] as below,

Nomenclature

Symbol description

B, m base and moving platform
PM parallel manipulator
R, S, P revolute, prismatic, spherical joints
ri vector of the ith limb (i=1,…, n)
δi, ri the length of ri and its the unit vector
fci, ci k constrained force and its unit vector
tci,τi n-k constrained torque and its unit vector
Bi, bi connection point of ri at B and m
Ei, ei vector from O to Bi and vector from bi to o
di the distance of o to fci
J Jacobian matrix of PM
ωgi, agi, angular velocity, acceleration, angular
εgi acceleration of ri at its mass center
mo, mgi mass of m and ri
Io,Igi inertial moment of m and ri
{B} coordinate system of B
{gi} coordinate system of ri at gi (g=p, q)
fai, tai active force and torque
fai, tai active force vector and torque vector
fci, tci Constrained force and torque
Cg general flexibility matrix of n limbs in {B}.

Fa general input active wrench applied onto ri,
Fc general constrained wrench exerted onto ri
Fd,Td dynamic workload wrench applied onto m at o
Fg, Tg general inertial wrench applied onto n limbs
Kg general stiffness matrix of n limbs
fm,tm inertial wrench of m applied onto m at o
fpi, tpi inertial wrench of piston rod in ri in {B}
fqi, tqi inertial wrench of cylinder in ri in {B}
G gravity acceleration
ei, ei the distance from o to bi and its vector.
f, t central workload wrench applied onto m
Jωi mapped matrix from angular velocity of ri to general

velocity of m
Jrgi mapped matrix from translational velocity of ri at gi to

general velocity of m
Jgi mapped matrix from general velocity of ri at gi to general

velocity of m
Jg general mapped matrix from general velocity of n active

limbs at gi to general velocity of m
B
giR rotational transform matrix from {gi} to {B}
Ee, G linear and rotational modular of elasticity
I, Ip linear and rotational moment of inertia
dgi, Agi diameter and cross section area of ri
⊥, || perpendicular, parallel constraints
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Fig. 1. A general PM (a), inertial force, its components of ri (b).
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