Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Stiffness analysis of parallel manipulators with linear limbs by considering inertial wrench of moving links and constrained wrench

Yi Lu^{a,b,*}, Zhuohong Dai^a, Nijia Ye^a

^a College of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China

^b Advanced metal forming key laboratory of Education Ministry & Parallel robot key laboratory of Hebei, 066004, PR China

ARTICLE INFO

Keywords: Parallel manipulator Stiffness Elastic deformation Inertial wrench Dynamic active and constrained wrench

ABSTRACT

A stiffness of the parallel manipulators with linear limbs is analyzed by considering the inertial wrench of the moving links and the constrained wrench. First, a formula is derived for solving the dynamic active and constrained wrenches, the inertial wrench of moving links based on the principle of virtual work. Second, the relationship between the elastic deformations of limbs and the dynamic active/constrained wrench and the inertial wrench of moving links are discovered and analyzed. Third, a unified stiffness model of parallel manipulators is established by considering the inertial wrench of moving links and the dynamic active/constrained active/constrained wrench. Fourth, a unified formula is derived for solving the elastic deformations of the moving platform by considering the inertial wrench of the moving links and the dynamic active/constrained wrenches. Finally, an analytic numerical example of the 3SPR-type parallel manipulator is given for solving its stiffness and elastic deformation. The correctness of derived formulae of the stiffness and the elastic deformations are verified by the analytic numerical solutions.

1. Introduction

Parallel manipulator (PM) has their special merits and has been applied widely in some industries [6,20]. Stiffness is one of the important indices for evaluating the PM performances, particularly when the PM are used as the machine tools and the robot arm/legs, and higher stiffness allows higher machining speed with higher accuracy of the end-effector. However, it is challenging issue to establish a precision stiffness model of various PMs. In this aspect, Gosselin [6] discovered stiffness mapping relation of PMs. Portman et al. [20] studied dynamic collinear stiffness of Gough-Stewart platform without considering limbs' mass. Zhang et al. [28] proposed an elastodynamic model for optimal design and performance improvement of the parallel kinematic machine by counting natural frequencies in the workspace. Yuan et al. [27] analyzed static stiffness and the dynamic stiffness of cable-driven PMs as considering the effect of both cable mass and elasticity by identifying the robot natural frequencies. Yan et al. [26] analyzed the total deformation of specific parallelogram-type parallel manipulators (PMs) using a strain energy method considering the compliances of the mobile platform. Lum et al. [16] proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs' sub-chains for achieving optimal dynamic and stiffness properties. Hoevenaars et al. (2011) presented a

Jacobian-based stiffness analysis method for PMs with non-redundant legs based on screw theory. Klimchik et al. [10] studied a stiffness modeling for perfect and non-perfect PMs under internal and external loadings to compute and compensate the compliance errors. Kim et al. (2014) derived a leg stiffness matrix of PMs with serially connected legs by considering the effect of passive joints using reciprocal screws. Wu et al. [23,25,22,24] investigated the stiffness of several PMs and studied their kinematics and dynamics. In order to enhance the stiffness analysis of serial and PMs with passive joints, Pashkevich et al. [17,18] presented a non-linear stiffness model, and presented a stiffness modeling for over-constrained PMs with flexible links and compliant actuating joints based on a multidimensional lumpedparameter model. Aginaga et al. [1] proposed a methodology for calculating the stiffness matrix of 6- RUS PM. Li and Xu [12] studied the stiffness characteristics of a 3PUU PM by considering actuations and constraints. Here, (R, P, U, C, S) represent (revolute, prismatic, universal, cylinder, spherical) joints, respectively. Carbone and Ceccarelli [2] deduced the stiffness matrix of a hybrid PM and analyzed its stiffness performance. Cheng et al. [3] analyzed the stiffness characteristics of the 3CPS PM based on the principle of virtual work. Chi and Zhang [4] improved the system stiffness of the reconfigurable PM to locate the highest system stiffness, single and multi-objective optimizations. Enferadi et al. (2011) analyzed the stiffness of a 3-RRP

http://dx.doi.org/10.1016/j.rcim.2016.12.003 Received 22 August 2016; Received in revised form 19 December 2016; Accepted 22 December 2016 0736-5845/ © 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: College of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, PR China. *E-mail address:* luyi@ysu.edu.cn (Y. Lu).

1000000000000000000000000000000000000	Robotics and Com	vouterIntearated	Manufacturina	46 (201)	7) 58-67
---------------------------------------	------------------	------------------	---------------	----------	----------

Nomenclature		F_a	general input active wrench applied onto r_i ,	
		F_c	general constrained wrench exerted onto r_i	
Symbol description		F_d, T_d	dynamic workload wrench applied onto m at o	
		F_q, T_q	general inertial wrench applied onto n limbs	
<i>B</i> , <i>m</i>	base and moving platform	K_{g}	general stiffness matrix of n limbs	
PM	parallel manipulator	f_m, t_m	inertial wrench of <i>m</i> applied onto <i>m</i> at <i>o</i>	
R, S, P	revolute, prismatic, spherical joints	f_{pi}, t_{pi}	inertial wrench of piston rod in r_i in $\{B\}$	
\boldsymbol{r}_i	vector of the <i>i</i> th limb ($i=1,,n$)	f_{qi}, t_{qi}	inertial wrench of cylinder in r_i in $\{B\}$	
$\boldsymbol{\delta}_i, r_i$	the length of \mathbf{r}_i and its the unit vector	G	gravity acceleration	
f_{ci}, c_i	k constrained force and its unit vector	<i>e</i> _{<i>i</i>} , <i>e</i> _{<i>i</i>}	the distance from o to b_i and its vector.	
t_{ci}, τ_i	<i>n</i> - <i>k</i> constrained torque and its unit vector	f , t	central workload wrench applied onto m	
B_i, b_i	connection point of r_i at B and m	$oldsymbol{J}_{\omega i}$	mapped matrix from angular velocity of r_i to general	
E_i, e_i	vector from O to B_i and vector from b_i to o		velocity of m	
d_i	the distance of o to f_{ci}	J_{rgi}	mapped matrix from translational velocity of r_i at g_i to	
J	Jacobian matrix of PM		general velocity of m	
$\boldsymbol{\omega}_{gi}, \boldsymbol{a}_{gi},$	angular velocity, acceleration, angular	J_{gi}	mapped matrix from general velocity of r_i at g_i to general	
$\mathbf{\epsilon}_{gi}$	acceleration of r_i at its mass center		velocity of m	
m_o, m_{gi}	mass of m and r_i	$oldsymbol{J}_g$	general mapped matrix from general velocity of n active	
I_{o}, I_{gi}	inertial moment of m and r_i		limbs at g_i to general velocity of m	
$\{B\}$	coordinate system of B	${}^{B}_{gi}R$	rotational transform matrix from $\{g_i\}$ to $\{B\}$	
$\{g_i\}$	coordinate system of r_i at g_i ($g=p$, q)	E_e, G	linear and rotational modular of elasticity	
f _{ai} , t _{ai}	active force and torque	I, I_p	linear and rotational moment of inertia	
f_{ai}, t_{ai}	active force vector and torque vector	d_{gi}, A_{gi}	diameter and cross section area of r_i	
f_{ci}, t_{ci}	Constrained force and torque	⊥,	perpendicular, parallel constraints	
C_g	general flexibility matrix of n limbs in $\{B\}$.			

spherical PM based on strain energy and Castigliano's theorem. Ivanov and Corves [9] adopted a universal analytical method for stiffnessoriented design of flexure hinge-based PM. Pinto et al. [19] proposed a general methodology for obtaining static stiffness maps in lower mobility PMs. Sadjadian and Taghirad [21] studied kinematic modeling and singularity and stiffness of a 3-DoF redundant PM. Enferadi, Hoevenaarset, Kimal et al. proposed different stiffness analysis methods for PMs by neglecting inertial wrench of the moving links [7,8,11]. Lu et al. [13,15] studied the stiffness and the elastic deformation of several PMs based on the principle of virtual work and using computeraided design variation geometry. Above studied have their merits and different focuses.

However, up to now, it has not been found to establish the stiffness model of PMs by considering the inertial wrench of the moving links and the dynamic active/constrained wrench and to discover its characteristics. In fact, the elastic deformations of PM generated by the inertial wrench of the mass of kinematic chain are quite large. Therefore, the inertial wrench of the moving links and the dynamic active/constrained wrench must be added into the stiffness model of PMs in order to solve the precision elastic deformations of PMs. For this reason, this paper focuses on the establishment of the stiffness model of PMs with linear limbs by considering the inertial wrench of moving links and the dynamic active/constrained wrench and to solve the precision elastic deformations of PMs.

2. General dynamics formula of PM

A dynamics formula is pre-condition for establishing the stiffness model of parallel manipulators (PMs) by considering the inertial wrench of moving links and the dynamic active/constrained wrench. A general PM with *n* linear limbs is shown in Fig. 1a. It is composed of a base *B*, a moving platform *m*, and *n* different linear limbs r_i (*i*=1, ..., *n*) for connecting *B* and *m*. Here, *B* includes *n* connecting points B_i and a central point *O*. *m* includes *n* connecting points b_i and a central point *o*.

Let δ_i be the unit vector of r_i from B_i to b_i . Let e_i and e_i are the distance from o to b_i and its vector. Let $\{g_i\}$ - $x_iy_iz_i$ be a coordinate system attached onto r_i at its mass center g_i (i=1, ..., n). Let $\{m\}$ -xyz be

a coordinate system attached onto *m* at *o*. Let {*B*}-*XYZ* be a coordinate system attached onto *B* at *O*. Let \bigcirc be the vector operator, \bigcirc may be one of $(+, -, \times, \cdot)$. Let u_1 and u_2 be two vectors or two matrixes. If *U* can be solved from $(u_1 \bigcirc u_2)$ in $\{g_i\}$, *U* and its components in $\{g_i\}$ and $\{B\}$ can be represented as follows:

$${}^{gi}U = {}^{gi}u_1 {}^{\circ si}u_2 = {}^{gi}(u_1 {}^{\circ}u_2),$$

$$U = u_1 {}^{\circ}u_2 = (u_1 {}^{\circ}u_2).$$
(1)

Let F_a be the $n \times 1$ general input active wrench vector applied onto r_i , F_a includes u active forces and n-u active torques. Let F_c is the $(6-n)\times 1$ general constrained wrench vector exerted onto r_i ; F_c includes k constrained forces and 6-n-k constrained torques. Let (F_d, T_d) be a dynamic workload wrench applied onto m at o. Let (f_{pi}, t_{pi}) be an inertial wrench of piston rod in r_i in $\{B\}$. Let (f_{qi}, t_{qi}) be an inertial wrench of cylinder in r_i in $\{B\}$.

A general dynamics formula of PM with n linear active limbs has been derived by [14] as below,

Fig. 1. A general PM (a), inertial force, its components of r_i (b).

Download English Version:

https://daneshyari.com/en/article/4948989

Download Persian Version:

https://daneshyari.com/article/4948989

Daneshyari.com