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A B S T R A C T

Demand forecasting is a fundamental component in a range of industrial problems (e.g., inventory manage-
ment, equipment maintenance). Forecasts are crucial to accurately estimating spare or replacement part
demand to determine inventory stock levels. Estimating demand becomes challenging when parts experience
intermittent demand/failures versus demand at more regular intervals or high quantities. In this paper, we
develop a demand forecasting approach that utilizes Bayes’ rule to improve the forecast accuracy of parts from
new equipment programs where established demand patterns have not had sufficient time to develop. In these
instances, the best information available tends to be “engineering estimates” based on like /similar parts or
engineering projections. A case study is performed to validate the forecasting methodology. The validation
compared the performance of the proposed Bayesian method and traditional forecasting methods for both
forecast accuracy and overall inventory fill rate performance. The analysis showed that for specific situations the
Bayesian-based forecasting approach more accurately predicts part demand, impacting part availability (fill
rate) and inventory cost. This improved forecasting ability will enable managers to make better inventory
investment decisions for new equipment programs.

1. Introduction

Demand forecasting is essential to inventory management.
Inventory stock levels are dependent on forecasts of demand, and
inaccurate estimation of spare part demand can lead to significant
downtime costs. As a result, many systems incur large investments in
spare parts inventories in an attempt to avoid ‘stock outs’. A further
complicating issue is that some spare parts experience intermittent
demands, implying there are long periods of no demand followed by a
series of demands in rapid succession. Intermittent demands create
difficulties for traditional statistical demand forecasting methods.

The most common approach to forecast demand is to utilize
statistical methods such as simple exponential smoothing. However,
these approaches require observed demand data. When starting a new
program, no historical information exists, which then requires the use
of engineering estimates. No matter how confident one is in the
estimate, all initial estimates of demand contain a considerable amount
of uncertainty. Yet, new programs rely heavily on engineering estimates
to determine optimal stock levels. For this reason, this paper explores
the risk associated with the uncertainty of engineering estimates for
spare parts in new programs and seeks to create a methodology that
accounts for one's confidence in engineering estimates.

Another related question that needs to be explored is when an

equipment program should transition from using engineering esti-
mates to statistical approaches using observed demand. This issue is
particularly important when equipment service level contracts are in
place. In these cases, it is required to both minimize equipment
program cost while still meeting agreed-upon service levels.

The current literature on demand forecasting for spare parts
highlights a gap that exists between research and practice in the field
of spare parts management [1,2]. Therefore, this paper focuses on
developing a methodology that is easily implementable. The following
section will first explore the related literature. Next, a Bayesian
methodology is proposed to combine prior knowledge with observed
data to obtain a new and improved estimate of demand. Finally, results
of a case study are presented that illustrate the merits of the proposed
approach.

2. Literature review

Over the past few decades, maintenance has become increasingly
important for industrial environments resulting in growth in this
research area. Effective maintenance is dependent on spare parts
availability. Additionally, concern regarding intermittent and lumpy
demand has been a focus of spare parts forecasting. Many reviews have
noted a research-practice gap in the study of spare parts management.
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Adrodegari et al. [3] performed a critical review addressing spare parts
inventory management and concluded that there are a limited number
of papers that give a practitioner's view on how to apply proposed
methods. The following review will examine three types of forecasting
methods for spare parts management: judgmental, statistical, and
Bayesian.

2.1. Judgemental forecasting

Judgmental forecasts are formed by expert opinion and are very
common in practice when little to no historical data is available [4].
This type of forecasting is also frequently used as an adjustment
method. Goodwin [5] pointed out that judgmental forecasting is used
in three different instances 1) when there is a limited amount of
historical demand as required by statistical methods; 2) when statis-
tical models cannot exhibit effects of special events that may influence
the future; 3) when modelers have a lack of understanding of statistical
methods.

2.2. Statistical forecasting

Statistical forecasting techniques are typically used when historical
data are available. There are numerous statistical forecasting methods
discussed in the literature. However, this section focuses primarily on
the literature related to spare parts forecasting using either time-series
or bootstrapping approaches.

Time series forecasting methods find patterns in data to predict the
future. Traditional time series methods such as moving average and
simple exponential smoothing (SES) are often used in practice. SES is
also largely used for inventory control system forecasting [6]. In order
to cope with periods with zero demand, Croston [7] proposed a simple
exponential smoothing technique that updates forecasts only in periods
of demand. Hill et al. [8] pointed out that traditional time-series
models can misjudge the functional relationship between independent
and dependent variables, so they proposed a bootstrapping method.
Willemain et al. [9] developed a heuristic to forecast intermittent
demand for service parts using a bootstrapping approach.

2.3. Bayesian forecasting

A Bayesian approach utilizes available information and updates
prior information (such as judgmental input) as observed demand
occurs. The Bayesian paradigm has been used to overcome difficulties
with limited demand data [10]. The objective of a Bayesian model is to
evaluate posteriors to calculate an unknown statistic based on a
likelihood function and a specified prior distribution. The likelihood
function p(y|θ) represents the model for the observed data. The prior
distribution p(θ) represents any prior knowledge the modeler knows
about demand. The posterior p(θ|y) is the end goal that allows
calculation of what the modeler believes the true demand rate is based
on observed data (likelihood function) and prior knowledge (prior
distribution). The prior, likelihood, and posterior are all related via
Bayes’ rule. Bayes’ rule contains an integral in the denominator that is
often intractable. However, the integral in the denominator of Bayes’
rule can be avoided by using conjugate priors.

The Bayesian approach to forecasting demand for spare parts is not
new in inventory control. In fact, Bayesian updating has been an active
area of research in inventory control literature since the early 1950s.
Scarf [11] was one of the first to propose Bayesian estimation in the
context of a periodic review inventory model. However, most of this
work evaluates inventory levels on an infinite horizon.

Several researchers have conducted comparative studies to support
the use of Bayesian procedures. Aronis et al. [12] utilized a Bayesian
approach to compare forecasts for electronic equipment spare parts
demands versus other approaches. They found that their Bayesian
approach resulted in lower stock levels at a 95% service level. Rahman

and Sarker [13] explored a Bayesian approach to the forecasting of
intermittent demand for seasonal products and found that their
Bayesian model was very effective.

Most of the prior comparative studies use forecast accuracy or
mean-value inventory optimization results to compare methods [1].
However, these results can lead to biased conclusions. Thus, this paper
will evaluate the impact of forecasting method on “true” fill rate
performance using simulation and determine whether these results
agree with the forecast accuracy and inventory optimization analysis.
The model developed will use Bayes’ rule to forecast demand in a
manner similar to Aronis et al. [12] since it will not change the
inventory optimization model. The weights applied to the prior
parameters give this research the unique ability to incorporate a
confidence in the engineering estimates. This paper uniquely utilizes
a Bayesian approach by 1) assuming the likelihood function is
exponentially distributed (versus Poisson) and 2) developing a method
to depict demand more accurately when zero demands have occurred.

3. Model formulation

A Bayesian forecasting approach immediately learns from observed
demand and includes confidence in the engineering estimate. This
section will apply Bayes’ rule to demand forecasting. In this paper
“demand” and “failure” are used interchangeably. In addition, it is
assumed that the available demand data is aggregated over time and
does not support the evaluation of a demand distribution that is
dependent on operating hours. Therefore, the formulation of the
Bayesian model requires the following assumptions:

1. Likelihood Function: Observed mean time between demands is
exponentially distributed.

2. Prior: Engineering estimates (mean time between failures) are
exponentially distributed. However, a Gamma function is used for
the prior since the exponential distribution is a special case of the
Gamma (α=1, β=mean) distribution.

Based on these assumptions, the posterior is formulated using
Bayes’ rule. The posterior is used to evaluate operating hours per
demand (or mean time between failures). The unknown parameter of
interest is λ, which is defined as operating hours per demand.
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The integral (or partition function) in the denominator stays
constant with respect to λ, so it can be ignored when computing λ.
The posterior is computed as follows:
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Eq. (4) is in the form of a Gamma distribution and is equivalent to
Gamma r n v x( + , + ∑ )i

n
i=1 . It is expressed as Gamma(r’,v’). The full

posterior equation follows:
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Upon the formulation of the posterior, the mean time between
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