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a  b  s  t  r  a  c  t

The  0-1  knapsack  problem  is  a  classic  combinational  optimization  problem.  However,  many  exiting  algo-
rithms  have  low  precision  and  easily  fall  into  local  optimal  solutions  to solve  the  0-1  knapsack  problem.  In
order  to  overcome  these  problems,  this  paper  proposes  a binary  version  of  the monkey  algorithm  where
the  greedy  algorithm  is  used  to  strengthen  the  local  search  ability,  the  somersault  process  is  modified  to
avoid  falling  into  local  optimal  solutions,  and  the cooperation  process  is  adopted  to  speed  up the  conver-
gence  rate of the  algorithm.  To  validate  the  efficiency  of  the  proposed  algorithm,  experiments  are  carried
out  with  various  data  instances  of 0-1  knapsack  problems  and  the  results  are  compared  with  those  of
five  metaheuristic  algorithms.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Knapsack problems (KPs) were first proposed by Dantzig in the
1950s [1] and subsequently attracted many scholars. Zou et al.
described a novel global harmony search (HS) algorithm that
includes two important operations, position updating and genetic
mutation, for solving 0-1 knapsack problems [2]. The experiment
shows the proposed algorithm has good performance for solv-
ing large-scale knapsack problems. Xiang et al. also considered a
novel global-best harmony search algorithm that combines a two-
phase repair operator to repair an infeasible harmony vector and
to further improve a feasible solution [3]. Changdar et al. con-
sidered an improved ant colony optimization (ACO) approach to
solve 0-1 knapsack problems in a fuzzy environment [4]. The pro-
posed algorithm creates n candidate groups for n objects; each
ant selects a candidate value from each group. Bansal et al. pro-
posed a modified particle swarm optimization called MBPSO based
on binary particle swarm optimization (BPSO) [5] for solving 0-1
knapsack problems and multidimensional knapsack problems [6].
Azad et al. proposed a simplified binary version of the artificial
fish swarm algorithm (AFSA) for solving 0-1 quadratic knapsack
problems [7]; the random heuristic drop item procedure is used to
make the points feasible, and the heuristic add item is also imple-
mented to improve the quality of the solutions. Glover used an
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improved greedy algorithm and surrogate constraints for linear
and quadratic knapsack problems [8]. Sitarz studied the relations
between multiple criteria dynamic programming (MCDP) and the
multiple knapsack problem [9]; the paper also showed how to
use MCDP methods to solve multiple knapsack problems. Gao
et al. presented a novel quantum-inspired artificial immune system
called MOQAIS, which is composed of a quantum-inspired arti-
ficial immune algorithm (QAIS) and an artificial immune system
(BAIS) for multiobjective knapsack problems [10]. QAIS is respon-
sible for exploration of the search space, and BAIS is applied for
exploitation of the search space. García-Martínez proposed a tabu-
enhanced destruction mechanism for an iterated greedy search in
studying quadratic multiple knapsack problems [11]; the method
records the last removed objects and avoids removing them again
in subsequent iterations. Baykasoğlu et al. used a priority-based
encoding technique for a firefly algorithm (FA) to construct feasible
solutions and prevent infeasibility for solving dynamic multidi-
mensional knapsack problems [12]. Hifi et al. used a dichotomous
search-based exact method based on decomposing the original
problem into a series of knapsack problems and introduced new
upper bounds and incremental valid lower bounds in the inter-
val search [13]. Levin et al. studied the stochastic behavior of the
knapsack problem and defined a variant problem in which item
values are deterministic and item sizes are independent random
variables [14]. Zhao used a nonlinear reductive dimension approx-
imate algorithm for the knapsack problem [15]. Liu et al. removed
useless solution regions before applying simulated annealing (SA)
to solve a knapsack problem and extracted the most possible part of
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the optimal solution space from the whole optimal solution space
[16]. Saraç et al. used a genetic algorithm (GA) and a hybrid solu-
tion approach for solving a developed model called the generalized
quadratic multiple knapsack problems (G-QMKP) [17]. The exper-
iment shows the proposed hybrid solution approach can obtain
good solutions in a reasonable time for a large-scale problem. Lin
investigated using GA in solving the fuzzy knapsack problem [18];
this method simulates a fuzzy number by distributing it into parti-
tion points and uses GA to evolve the values in each partition point.

The monkey algorithm (MA) is a new type of swarm intelli-
gence based algorithm. It was proposed by Zhao and Tang in 2008
and is derived from simulation of the mountain-climbing processes
of monkeys [19]. It consists of three processes: the climb process,
watch–jump process and somersault process. The climb process is
designed to gradually improve the objective function value. How-
ever, MA  will spend considerable computing time searching for
local optimal solutions in the climb process. To reduce the com-
puting time and speed up the convergence rate, Chen and Zhou
introduced the inertial step in the climb process and combined the
simple method after the somersault process [20]. The watch–jump
process can speed up the convergence rate of the algorithm, the
purpose of the somersault process is to make monkeys find new
search domains to avoid falling into local search. The algorithm
has the advantages of simple structure, strong robustness, and not
easy falling into local optimal solutions. Therefore, MA  has been
successfully applied in solutions to various optimization problems,
such as transmission network expansion planning [21], intrusion
detection technology [22], optimal sensor placement in struc-
tural health monitoring [23], the optimization of gas filling station
project scheduling problem [24], the clustering analysis problem
[25], etc. In this paper, the 0-1 knapsack problem will be stud-
ied, and a binary version of the monkey algorithm which combines
cooperation process and greedy strategy (CGMA) is proposed. The
algorithm improves the calculation accuracy and increases the con-
vergence speed of the algorithm to a certain degree. The numerical
experiment results show that the proposed algorithm has good per-
formance in solving the 0-1 knapsack problem. It can be an efficient
alternative for solving the 0-1 knapsack problem.

2. The 0-1 knapsack problem

The 0-1 knapsack problem is a typical NP-hard problem in oper-
ations research [26]. The problem is defined as follows:

Given a set of items O = {o1, o2, . . .,  on}, each with a weight wi

and a value pi, determine the number of each item to include in
a collection so that the total weight WX is less than or equal to a
given limit and the total value PX is as large as possible. It derives its
name from the problem faced by someone who is constrained by a
fixed-size knapsack and must fill it with the most valuable items.
Its mathematical model is as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maximize f (x1, x2, . . .,  xn) = PX =
n∑

i=1

pixi

subject to WX  =
n∑

i=1

wixi ≤ V

(1)

and xj ∈ {0, 1}, j = 1, 2, . . .,  n. Where P = (p1, p2, . . .,  pn), W =
(w1, w2, . . .,  wn) represent the value vector and weight vector of all
items. V is the maximum capacity of the knapsack. xi = 1 indicates
that item i is included in the knapsack and xi = 0 that it is not.

3. Description of modified monkey algorithm

The monkey algorithm was first proposed to solve numeri-
cal optimization problems as a new swarm intelligence based

algorithm stemmed from the mountain-climbing behavior of
monkeys [19]. Assume that there are many mountains in a given
field. At the beginning, the monkeys climb up from their respec-
tive positions to find the mountaintops (this action is called climb
process). When a monkey get the top of its mountain, it will
find a higher mountain within the sight and jump somewhere
of the mountain from the current position (this action is called
watch–jump process), then repeat the climb process. After rep-
etitions of the climb process and the watch–jump process, each
monkey will somersault to a new search domain to find a much
higher mountaintop (this action is called somersault process).

This paper proposed a binary version of the monkey algorithm
where the greedy algorithm is used to correct the infeasible solu-
tions and to improve the quality of the feasibility, the somersault
process is modified to avoid falling into local search, the cooper-
ation process is implemented to speed up the convergence rate,
and the control parameter is used to keep the population diversity.
The algorithm consists of 5 parts, the climb process, watch–jump
process, greedy strategy repair process, cooperation process and
somersault process.

3.1. Coding method

For the 0-1 knapsack problem, each item has two  different sta-
tus, namely the item has been included in the knapsack or it remains
out. First, M is defined as the population size of monkeys. For mon-
key i, its position is denoted as a vector Xi = (xi1, xi2, . . .,  xin), and this
position will be employed to express a solution of the 0-1 knapsack
problem, where xij ∈ {0, 1} and j = 1, 2, . . .,  n, n is the number of
the items. xij = 1 indicates the item j is included in the knapsack and
xij = 0 indicates it is not.

3.2. Initial population

In CGMA, the initial population is randomly generated. The ran-
dom initialization process of M monkeys and n items is as follows:

for i = 1 to M do
for j = 1 to N do

x[i][j] = rand() ;
If x[i][j] < 0.5

x[i][j] = 0 ;
else

x[i][j] = 1 ;
endif

endfor
endfor

where xi,j represents the jth component in the vector Xi.

3.3. Climb process

According to the idea of pseudo-gradient-based simultaneous
perturbation stochastic approximation (SPSA) [27], the climb pro-
cess is a step-by-step procedure to improve the objective function
by choosing a better one between two  positions that are generated
around the current position. For the monkey i, its position is Xi = (xi1,
xi2, . . .,  xin), i = 1, 2, . . .,  M,  respectively. f(Xi) is the corresponding
objective function value. The improved climb process is given as
follows:

(1) Randomly generate two  vectors �x′
i
= (�x′

i1, �x′
i2, . . .,  �x′

in
)

and �x′′
i

= (�x′′
i1, �x′′

i2, . . .,  �x′′
in

), where

�x′
ij, �x′′

ij =

⎧⎪⎨
⎪⎩

a with probability
1
2

−a with probability
1
2

(2)
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