
Contents lists available at ScienceDirect

Robotics and Computer–Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Optimal trajectory generation algorithm for serial and parallel manipulators

Serdar Kucuk

Kocaeli University, Technology Faculty, Department of Biomedical Engineering, Umuttepe Campus, 41380 Kocaeli, Turkey

A R T I C L E I N F O

Keywords:
Trajectory generation
Cubic spline
Jerk
PSO algorithm
Serial and parallel manipulators

A B S T R A C T

In this paper, anOptimal Trajectory Generation Algorithm (OTGA) is developed for generating minimum-time
smooth motion trajectories for serial and parallel manipulators. OTGA is divided into two phases. The first
phase encompasses derivation of minimum-time optimal trajectory using cubic spline due to its less vibration
and overshoot characteristics. Although cubic splines are widely used in robotics, velocity and acceleration
ripples in the first & last knots can worsen manipulator trajectory. The second phase includes changing cubic
spline interpolation in the first and last knots of optimized trajectory with 7th order polynomial for having zero
jerk at the beginning and end points of trajectory. Performing this modification eliminate undesired worsening
in the trajectory and provide smoother start and stop of joint motions. Particle Swarm Optimization (PSO) is
chosen as optimization algorithm because of its easy implementation and successful optimization performance.
OTGA has been tested in simulation for PUMA robot and results are compared with algorithms proposed by
earlier authors. In addition, a discrete-time PID control scheme for PUMA robot is designed for comparing
energy consumption of OTGA with algorithms developed by previous authors. Comparison results illustrated
that OTGA is the better trajectory generation algorithm than the others.

1. Introduction

Trajectory generation is very important for robotic manipulators
since it produces input to the control system of the robotic manip-
ulators for executing the desired task with satisfactory performance [1].
In addition, generated trajectories must provide smooth kinematic
motion to maintain high tracking accuracy and avoid exciting the
natural modes of control system [2]. In industry, most of the robot
trajectories are first constructed off-line and then end-effectors of
robots are forced to track this path on-line. Off-line trajectory genera-
tion can be performed at two different approaches namely, hand level
and joint level. Minimum time trajectory generation at hand level was
performed by the authors of Luh and Lin [3]. In hand level approach,
joint coordinates are converted into Cartesian coordinates by means of
Jacobian transformation for each sampling period. Errors may occur in
inverse Jacobian transformation therefore robot tracks the trajectory
incorrectly. Afterwards reference input torque for each joint is calcu-
lated by means of robot dynamic equations which are highly nonlinear
[4]. The major drawback of the hand level approach is that whole
process is performed at one sampling period. This is always limited and
decelerates the system performance [5]. In joint level approach,
Cartesian coordinates are converted into joint coordinates by means
of inverse kinematics. Robot manipulators are controlled at joint level
which is less expensive in terms of computational complexity compared
to hand level approach. In joint level approach, kinematic constraints

are considered only during the trajectory generation [6]. The dynamic
constraints that increase the computational effort are ignored. It is the
major advantage of the joint level approach. Hence it is mostly
preferred to reduce computational effort.

In joint level approach, a number of trajectory points (via points) is
firstly defined in terms of reference end-effector pose in Cartesian
space. Secondly these via points (called also as knots) are transformed
into joint angles by using inverse kinematics. Finally these knots are
interpolated using splines. Several kinds of splines such as polynomial,
trigonometric [7], quantic [8,9], B‐spline [10] and cubic spline [5] are
proposed for trajectory generation in literature. Among these splines,
cubic spline is mostly used for interpolating the robot trajectories since
it provides continuity in velocity and acceleration at every knot. It
should be noticed that cubic spline curves do not provide continuity in
jerk. Although cubic spline curves does not provide continuity in jerk,
they are only the third-degree spline that can provide jerk limitation
[11]. Cubic splines can also produce lowest possible jerk peak [8]. This
feature is especially important for reducing vibration. Thus a smooth
curve trajectories can be obtained during motion. Minimizing jerk
decreases joint position errors, causes less vibration, limits excessive
wear on the robot and prevents large oscillations which can occur
employing higher order polynomials [11–14].

Although cubic splines are commonly used in robotics due to its
several advantageous mentioned above they have an important draw-
back. Joint velocity and acceleration ripples which take place in the

http://dx.doi.org/10.1016/j.rcim.2017.04.006
Received 31 August 2016; Received in revised form 13 April 2017; Accepted 13 April 2017

E-mail address: skucuk@kocaeli.edu.tr.

Robotics and Computer–Integrated Manufacturing 48 (2017) 219–232

0736-5845/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/07365845
http://www.elsevier.com/locate/rcim
http://dx.doi.org/10.1016/j.rcim.2017.04.006
http://dx.doi.org/10.1016/j.rcim.2017.04.006
http://dx.doi.org/10.1016/j.rcim.2017.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2017.04.006&domain=pdf

first and last knots can deteriorate the manipulator trajectory [15].
Several studies have been performed to generate smooth and time‐
optimal trajectories by overcoming this problem in the literature. Lin
et al. [5] formulated and optimized cubic polynomial joint trajectories
for using polyhedron search method. Piazzi and Visioli [6] studied
optimization of global minimum-jerk trajectory planning of robot
manipulators using interval analysis. Tandu and Bazaz [16] developed
three-cubic methods to generate a joint trajectory by interpolating
intermediate positions and velocities based on a combination of cubic
splines. They used analytical optimization approach. Chettibi et al. [17]
presented minimum cost trajectory planning algorithm for robotic
manipulators using Sequential Quadratic Programming (SQP) method.
Gasparetto and Zanotto [18] proposed a technique for time-jerk
optimal planning of robot trajectories. They used sequential quadratic
programming techniques in order to get the optimal trajectory. Kolter
and Andrew [15] developed a method for optimizing task-space cubic
spline trajectories using convex optimization techniques.
Demeulenaere et al. [19] developed a general framework to synthesize
optimal polynomial splines for rigid motion systems using convex
programming framework. Aribowo and Terashima [11] performed a
study about cubic spline trajectory planning and vibration suppression
of semiconductor wafer transfer robot arm. They used SQP method for
solving the constrained nonlinear trajectory planning optimization
problem. The authors mentioned above have used classic numerical
optimization algorithms based on successive linearization using the
first and the second derivatives of objective functions in trajectory
planning of robotic manipulator. The disadvantages of these derivative-
based optimization algorithms arise from sensitivity to problem
formulation and algorithm selection. They usually converge to a local
minimum [20]. The PSO algorithm used also in this study have certain
advantages over classical optimization techniques and other evolu-
tionary algorithms: (i) It finds optimal or near optimal solutions to
nonlinear and discontinuous problems at higher dimensions within the
shorter computation time, (ii) it has memory that makes the knowledge
of the better solution obtained from last iterations to save all the
particles, (iii). The solution does not depend on the initial population.
Therefore PSO algorithm is considered an important part of OTGA
proposed in this study. Trajectory generation is performed into phases.

The first phase includes derivation of minimum-time optimal trajectory
using PSO algorithm. Although cubic spline optimization is useful in
minimizing the joint velocity, acceleration ripples and jerk, the first and
last knots have still a sharp start and stop of motion that can
deteriorate manipulator trajectory. In the second phase, the cubic
spline interpolation in the first and last knots of optimized trajectory
are changed with the interpolation of seventh order polynomial in
order to get rid of this undesired deteriorations. Performing this
change makes the joints have smoother start and stop of motion.
Subsequently, OTGA has been tested in simulation for PUMA robot
and the results are compared with the previous algorithms. Electrical
energy consumptions of OTGA and the previous algorithms are also
compared and given in a table. Finally comparison results are
discussed.

2. Formulation of cubic spline joint trajectory

In robotics, there are two types of motion used in general namely,
pick & place motion and path-constraint motion. In pick and place
motion, start and end-points are important. Robot manipulators per-
form a task freely between pick and place locations. However in
constraint motion, robot manipulators follow a certain path that must
be defined in advance [21]. Path constraint motion is of vital
importance such as in welding, cutting, surgery and machining
applications where continuous path motions are required.

Polynomial splines are often applied to perform path constraint
motion in general. Among polynomial splines, cubic splines are often
preferred since they provide continuous velocity and acceleration with
lowest degree [5]. Cubic spline interpolation for robot manipulators
uses several kinematically feasible Cartesian knots between start and
end-points. These knots defined in Cartesian task space are then
converted into joint space by using inverse kinematics. Subsequently
each joint trajectory is planned as a combination of numerous
piecewise cubic segments x t x t x t x t((), (),…, (), ())n n1 2 −1 that connects
predefined knots as in Fig. 1. A joint trajectory with n piecewise cubic
segments possess n+1 predetermined joint angle values
θ θ θ θ(, ,…, ,)n n1 2 +1 [22].

The following system of linear equations can be derived by
performing a sequence of mathematical operations as in [22]. The
joint acceleration θ θ θ θ(̈ , ̈ ,…, ̈ , ̈)n n2 3 −1 at each knot can be found by solving
following system of linear equations where hi represents the time
intervals between tiand ti+1, i n(= 1,2, …, + 1).

3. Particle swarm optimization

PSO algorithm introduced by Kennedy and Eberhart in 1995 [23] is a
robust stochastic population-based technique for solving numerical opti-
mization problems. The PSO algorithm (whose flowchart given in Fig. 2)
have certain advantages over classical optimization techniques and other
evolutionary algorithms: (i) it finds optimal or near optimal solutions to
nonlinear and discontinuous problems at higher dimensions, (ii) it is
computationally inexpensive, (iii) it has fewer parameters to adjust, (iv) it
has memory that makes the knowledge of the better solution obtained from
last iterations to save all the particles, (v) quickly converge the fitness
function and (vi) the solution does not depend on the initial population.
PSO algorithm has been successfully applied in many kinds of engineering
problems [24–26]. In particle swarm optimization technique, every

Fig. 1. Cubic spline trajectory with several piecewise cubic segments.

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎡
⎣⎢

⎤
⎦⎥

h h h h h
h h h h h

h h h h

h h h h
h h h h h

h h h h h

θ
θ
θ

θ

θ
θ

θ θ
θ θ

h
θ θ

h
θ θ

h
θ θ

h
θ θ

h
θ θ

h
θ θ

+ 3 + 2 0 0 0 0 0
3(+) 2 + 3 0 0 0 0

2(+) 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 2(+) 0
0 0 0 0 − −3 − 2 −3(+)

0 0 0 0 0 − −(+ 2 + 3)

̈
̈
̈

⋮
̈
̈
̈

= 6 −
− −

−
−

⋯
−

−
− −

−

n n n n

n n n n n

n n n n n

n

n

n

n n

n

n n

n

n n

n
n n

T

1
2

1 2 2
2

2
2

1 2 3 2 3

3 3 4 4

−3 −3 −2 −2

−2 −1 −2 −1

−1
2 2

−1
2

−1

2

3

4

−2

−1

3 1
4 3

3

5 4

4

4 3

3

−1 −2

−2

−2 −3

−3

−1 −2

−2
+1 −1

(1)

S. Kucuk Robotics and Computer–Integrated Manufacturing 48 (2017) 219–232

220

Download English Version:

https://daneshyari.com/en/article/4949040

Download Persian Version:

https://daneshyari.com/article/4949040

Daneshyari.com

https://daneshyari.com/en/article/4949040
https://daneshyari.com/article/4949040
https://daneshyari.com

